Volume 43 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
WEI Jingwen, QIAN Yunsheng, CAO Yang. Prediction model of K2CsSb photocathode reflectivity based on LSTM[J]. Journal of Applied Optics, 2022, 43(6): 1037-1043. doi: 10.5768/JAO202243.0604001
Citation: WEI Jingwen, QIAN Yunsheng, CAO Yang. Prediction model of K2CsSb photocathode reflectivity based on LSTM[J]. Journal of Applied Optics, 2022, 43(6): 1037-1043. doi: 10.5768/JAO202243.0604001

Prediction model of K2CsSb photocathode reflectivity based on LSTM

doi: 10.5768/JAO202243.0604001
  • Received Date: 2022-08-08
  • Rev Recd Date: 2022-09-06
  • Available Online: 2022-09-16
  • Publish Date: 2022-11-14
  • Aiming at the problem that the growth state of K2CsSb photocathode cannot be predicted in the current preparation process of K2CsSb photocathode, a prediction model of K2CsSb photocathode reflectivity based on long short-term memory (LSTM) recurrent neural network was proposed. The one-dimensional original reflectivity data set was reconstructed into a two-dimensional data input model after cleaning, screening, serialization and other preprocessing methods. In order to make full use of the highly correlated characteristics of reflectivity data in time series, this model used a double-layer LSTM network to extract features, the prediction results were output through the fully connected layer, and the mean square error (MSE) was used as the evaluation standard for the prediction effect of the model. The experimental results show that the network structure of the model is reasonable and performs well in different data sets, and the prediction accuracy rate can reach 99.21%. The proposed model can be used in the fabrication process of K2CsSb photocathode, and the process parameters can be adjusted by feedback of the reflectivity prediction value to approach the target trend, which can promote the performance of the photocathode.
  • loading
  • [1]
    HIROYUKI S. Review of photo-sensor R&D for future water Cherenkov detectors: Report of the 12th International Workshop on Next generation Nucleon Decay and Neutrino Detectors[R]. Zurich, Switzerland: NNN11, 2010.
    常本康. 大面积MCP-PMT K2CsSb光电阴极理论与测控技术研究[J]. 红外技术,2013,35(8):455-462.

    CHANG Benkang. Theory and control technology of large area MCP-PMT K2 CsSb photocathode[J]. Infrared Technology,2013,35(8):455-462.
    SMEDLEY J, RAO T, WANG Erdong. K2CsSb cathode development[J]. AIP Conference Proceedings,2009,1149(1):1062-1066.
    DING Z, GAOWEI M, SINSHEIMER J, et al. In-situ synchrotron X-ray characterization of K2CsSb photocathode grown by ternary co-evaporation[J]. Journal of Applied Physics,2017,121(5):055305. doi: 10.1063/1.4975113
    ZHANG Fan, LI Xiaoping, LI Xiaoshen. Development of preparation systems with K2 CsSb photocathodes and study on the preparation process[J]. Chinese Physics Letters,2019,36(2):022901. doi: 10.1088/0256-307X/36/2/022901
    GHOSH C, VARMA B P. Preparation and study of properties of a few alkali antimonide photocathodes[J]. Journal of Applied Physics,1978,49(8):4549-4553. doi: 10.1063/1.325465
    谢华木, 王尔东. 作为加速器电子源的高量子效率K2CsSb光阴极制备工艺研究[J]. 真空,2017,54(1):63-66.

    XIE Huamu, WANG Erdong. Research on fabrication recipe of high quantum efficiency K2CsSb photocathode[J]. Vacuum,2017,54(1):63-66.
    刘如彪. 高性能光电阴极工艺监控技术研究[D]. 南京: 南京理工大学, 2008.

    LIU Rubiao. Research on monitor technique of technology about high performance photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2008.
    李晓峰, 田金生, 钱芸生, 等. 多碱阴极光学反射率监控[J]. 红外技术,1997,19(4):39-42.

    LI Xiaofeng, TIAN Jinsheng, QIAN Yunsheng, et al. Reflectance monitoring on multialkali photocathode layer growth[J]. Infrared Technology,1997,19(4):39-42.
    孙建宁, 司曙光, 王兴超, 等. 一种利用反射率理论模型指导K2CsSb光电阴极的制备方法[J]. 红外技术,2017,39(12):1087-1091.

    SUN Jianning, SI Shuguang, WANG Xingchao, et al. Preparation method of K2CsSb photocathode using the reflectance theory model[J]. Infrared Technology,2017,39(12):1087-1091.
    陶兆民, 许汴生. 半透明Sb-K-Cs光电阴极的研制[J]. 中国科学技术大学学报,1966(1):90-92.

    TAO Zhaomin, XU Biansheng. Preparation of Translucent Sb-K-Cs Photocathode[J]. Journal of University of Science and Technology of China,1966(1):90-92.
    JIN Muchun, CHANG Benkang, CHENG Hongchang, et al. Research on quantum efficiency of transmission-mode InGaAs photocathode[J]. Optik,2014,125(10):2395-2399. doi: 10.1016/j.ijleo.2013.10.086
    MOTTA D, SCHÖNERT S. Optical properties of bialkali photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005,539(1/2):217-235.
    田远洋, 徐显涛, 彭安帮, 等. 训练数据量对LSTM网络学习性能影响分析[J]. 水文,2022,42(1):29-34. doi: 10.19797/j.cnki.1000-0852.20210256

    TIAN Yuanyang, XU Xiantao, PENG Anbang, et al. Effects of training data on the study performance of LSTM network[J]. Journal of China Hydrology,2022,42(1):29-34. doi: 10.19797/j.cnki.1000-0852.20210256
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技,2021,34(2):21-26. doi: 10.16180/j.cnki.issn1007-7820.2021.02.004

    GE Jing, LIU Zilong. The algorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology,2021,34(2):21-26. doi: 10.16180/j.cnki.issn1007-7820.2021.02.004
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (143) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint