Citation: | YU Xiuming, DING Yunfei, MA Wanzhuo, ZHAO Desheng, LIU Runmin, WANG Tianshu. Tunable multi-wavelength holmium-doped fiber laser operating at 2.1μm[J]. Journal of Applied Optics, 2019, 40(3): 500-504. doi: 10.5768/JAO201940.0307003 |
SCOTT N J, CILIP C M, FRIED N M.Thulium fiber laser ablation of urinary stones through small-core optical fibers[J]. IEEE J. Sel. Top. Quantum Electron, 2009, 15:435-440. doi: 10.1109/JSTQE.2008.2012133
|
MCALEAVEY F J, O'GORMAN J, DONEGAN J F, et al.Narrow linewidth, tunable tm-doped fluoride fiber laser for optical-based hydrocarbon gas sensing[J]. IEEE J. Sel. Top. Quantum Electro, 1997, 3:1103-1111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5041249651a4c271454ce860aefe850
|
LIU Xiaoping, OSGOOD R M, Jr VLASOV Y A, et al.Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides[J]. Nature Photon, 2010, 4: 557-560. doi: 10.1038/nphoton.2010.119
|
WANG Tianshu, WEI Yizhen, HU Kai, et al.All-fiber laser generating at 3.8 μm pumped by 1565 nm fiber laser and the second-order laser at 1.9 μm[J]. Microw. Opt. Technol. Lett:2014, 56: 848-850. doi: 10.1002/mop.28198
|
WU Jianfeng, JIANG Shibin, QUAN Tiequn, et al. 2 μm lasing from highly thulium doped tellurite glass microsphere[J]. Appl. Phys. Lett., 2005, 87:211118. doi: 10.1063/1.2132532
|
GENG Jihong, WU Jianfeng, JIANG Shibin, et al.Efficient operation of diode-pumped single frequency thulium-doped fiber lasers near 2 μm[J]. Opt. Lett., 2007, 32: 355-357. doi: 10.1364/OL.32.000355
|
RICHARDS B, TSANG Y, BINKS D, et al.Efficient 2 μm Tm3+-doped tellurite fiber laser[J]. Opt. Lett., 2008, 33: 402-404. doi: 10.1364/OL.33.000402
|
GENG Jihong, WANG Qing, WANG Jiafu, et al.All-fiber wavelength-swept laser near 2 μm[J]. Opt. Lett., 2011, 36:3771-3773. doi: 10.1364/OL.36.003771
|
WEI Y, HU K, SUN B, et al. All-fiber widely wavelength-tunable thulium-doped fiber laser incorporating a Fabry-Perot filter[J]. Laser Phys., 2012, 22(4): 770-773. doi: 10.1134/S1054660X12040263
|
ZHANG M, KELLEHER E J R, TORRISI F, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 2012, 20(22): 25077-25084. doi: 10.1364/OE.20.025077
|
刘江, 王璞.高功率被动锁模2.0 μm掺铥飞秒脉冲光纤激光器[J].中国激光, 2012, 39(9) : 0902001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201209001
LIU Jiang, WANG Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese Journal of Lasers, 2012, 39(9): 0902001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201209001
|
WANG Tianshu, MA Wanzhuo, JIA Qingsong, et al.Passively mode-locked fiber lasers based on nonlinearity at 2 μm band[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24 (3): 1102011.
|
WANG Xiong, ZHU Yadong, ZHOU Pu, et al.Tunable, multiwavelength tm-doped fiber laser based on polarization rotation and four-wave-mixing effect[J]. Optics Express, 2013, 21(22): 25977-25984. doi: 10.1364/OE.21.025977
|
MA Wanzhuo, WANG Tianshu, ZHANG Peng, et al. Widely tunable multi-wavelength thulium-doped fiber laser using a fiber interferometer and a tunable spatial mode beating filter[J]. Appl. Opt., 2015, 54 (12): 3786- 3791. doi: 10.1364/AO.54.003786
|
ZHANG Peng, WANG Tianshu, MA Wanzhuo, et al.Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect[J]. Appl. Opt., 2015, 54 (15): 4667-4671. doi: 10.1364/AO.54.004667
|
LIU Peng, WANG Tianshu, ZHANG Peng, et al.Widely tunable multi-wavelength thulium-doped fiber laser based on nonlinear polarization rotation[J]. Microw and Opt. Technol. Lett., 2016, 58 (7): 1540-1543. doi: 10.1002/mop.29846
|
PENG Wanjing, YAN Fengping, LI Qi, et al. A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror[J]. Laser Physics Letters, 2013, 10(11):115102 doi: 10.1088/1612-2011/10/11/115102
|
WANG Zhen, WANG Tianshu, JIA Qingsong, et al.Triple brillouin frequency spacing multiwavelength fiber laser with double Brillouin cavities and its application in microwave signal generation[J]. Appl. Opt., 2017, 56 (26): 7419-7426. doi: 10.1364/AO.56.007419
|