Citation: | LIU Lumingen, ZHANG Yaozong, LUAN Lin, HONG Hanyu. Shape-based infrared image leakage gas detection method[J]. Journal of Applied Optics, 2019, 40(3): 468-472. doi: 10.5768/JAO201940.0303002 |
裴昱, 陈远鸣, 卞晓阳, 等.基于RBF神经网络气压补偿的非色散红外SF_6气体传感器[J].应用光学, 2018, 39(03):366-372. http://www.yygx.net/CN/abstract/abstract11118.shtml
PEI Yu, CHEN Yuanming, BIAN Xiaoyang, et al. Non-dispersion infrared SF_6 gas sensor with air pressure compensation based on RBF neural network[J]. Journal of Applied Optics, 2018, 39(03):366-372. http://www.yygx.net/CN/abstract/abstract11118.shtml
|
谭雨婷, 李家琨, 金伟其, 等.气体泄漏的单点探测器与红外成像检测的灵敏度模拟分析[J].红外与激光工程, 2014, 43(08):2489-2495. doi: 10.3969/j.issn.1007-2276.2014.08.017
TAN Yuting, LI Jiakun, JIN Weiqi, et al. Model analysis of the sensitivity of single-point sensor and IRFPAdetectors used in gas leakage detection[J]. Infrared and Laser Engineering, 2014, 43(08):2489-2495. doi: 10.3969/j.issn.1007-2276.2014.08.017
|
MURVAY P S, SILEA I. A survey on gas leak detection and localization techniques[J].Journal of Loss Prevention in the Process Industries, 2012, 25(6):966-973. doi: 10.1016/j.jlp.2012.05.010
|
ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[J].Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, 2004, 2: 28-31.
|
PICCARDI M. Background subtraction techniques: a review[J].Systems, man and cybernetics, 2004 IEEE international conference on. IEEE, 2004, 4: 3099-3104.
|
APPANA D K, ISLAM R, KHAN S A, et al. A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems[J]. Information Sciences, 2017, 418:91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6c037e1ce492ed7c523a66d2dda67b5
|
OJO J A, OLADOSU J A. Effective smoke detection ising spatial-temporal energy and weber local descriptors in three orthogonal planes (WLD-TOP)[J]. Journal of Computer Science and Technology, 2018, 18(01):e05-e05.
|
YE W, ZHAO J, WANG S, et al. Dynamic texture based smoke detection using surfacelet transform and HMT model[J]. Fire Safety Journal, 2015, 73:91-101. doi: 10.1016/j.firesaf.2015.03.001
|
YUAN F. A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection[J]. Pattern Recognition, 2012, 45(12):4326-4336. doi: 10.1016/j.patcog.2012.06.008
|
ZHAO Y, LI Q, GU Z. Early smoke detection of forest fire video using CS Adaboost algorithm[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):2121-2124. doi: 10.1016/j.ijleo.2015.05.082
|
LI S, WANG B, GONG L, et al. A novel smoke detection algorithm based on MSER tracking[C]//Control and Decision Conference (CCDC), 2015 27th Chinese. IEEE, 2015: 5676-5681.
|
FILONENKO A, HERNNDEZ D C, JO K H. Real-time smoke detection for surveillance[C]//Industrial Informatics (INDIN), 2015 IEEE 13th International Conference on. IEEE, 2015: 568-571.
|
王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[J].北京: 北京航空航天大学出版社, 2013.
WANG Xiaochuan, SHI Feng, YU Lei, et al. MATLAB neural network 43 case studies[J]. Beijing: Beihang University Press, 2013.
|
HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[EB/OL].[2016-05-19]. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
|
CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST), 2011, 2(3):27. http://d.old.wanfangdata.com.cn/Periodical/jdq201315008
|