Volume 40 Issue 3
May  2019
Turn off MathJax
Article Contents
LIU Lumingen, ZHANG Yaozong, LUAN Lin, HONG Hanyu. Shape-based infrared image leakage gas detection method[J]. Journal of Applied Optics, 2019, 40(3): 468-472. doi: 10.5768/JAO201940.0303002
Citation: LIU Lumingen, ZHANG Yaozong, LUAN Lin, HONG Hanyu. Shape-based infrared image leakage gas detection method[J]. Journal of Applied Optics, 2019, 40(3): 468-472. doi: 10.5768/JAO201940.0303002

Shape-based infrared image leakage gas detection method

doi: 10.5768/JAO201940.0303002
  • Received Date: 2018-10-10
  • Rev Recd Date: 2018-10-19
  • Publish Date: 2019-05-01
  • Aiming at the explosion and fire caused by leakage gas in industrial production, an infrared image leakage gas detection method based on shape and support vector machine(SVM) is proposed. The SVM classifier is trained by using the shape features of the infrared image sample of the leaking gas and the interfering object. The candidate target region is obtained by using the background difference-based motion detection for the infrared image sequence, and then the shape feature is extracted from the candidate target region, and finally the SVM classifier is used to obtain the final detection result. Experiments were carried out using ethylene gas leakage simulation data, and the detection rate was up to 98%. The results show that this method can effectively detect the leakage gas, which greatly reduces the false detection caused by the interference.
  • loading
  • 裴昱, 陈远鸣, 卞晓阳, 等.基于RBF神经网络气压补偿的非色散红外SF_6气体传感器[J].应用光学, 2018, 39(03):366-372. http://www.yygx.net/CN/abstract/abstract11118.shtml

    PEI Yu, CHEN Yuanming, BIAN Xiaoyang, et al. Non-dispersion infrared SF_6 gas sensor with air pressure compensation based on RBF neural network[J]. Journal of Applied Optics, 2018, 39(03):366-372. http://www.yygx.net/CN/abstract/abstract11118.shtml
    谭雨婷, 李家琨, 金伟其, 等.气体泄漏的单点探测器与红外成像检测的灵敏度模拟分析[J].红外与激光工程, 2014, 43(08):2489-2495. doi: 10.3969/j.issn.1007-2276.2014.08.017

    TAN Yuting, LI Jiakun, JIN Weiqi, et al. Model analysis of the sensitivity of single-point sensor and IRFPAdetectors used in gas leakage detection[J]. Infrared and Laser Engineering, 2014, 43(08):2489-2495. doi: 10.3969/j.issn.1007-2276.2014.08.017
    MURVAY P S, SILEA I. A survey on gas leak detection and localization techniques[J].Journal of Loss Prevention in the Process Industries, 2012, 25(6):966-973. doi: 10.1016/j.jlp.2012.05.010
    ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[J].Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, 2004, 2: 28-31.
    PICCARDI M. Background subtraction techniques: a review[J].Systems, man and cybernetics, 2004 IEEE international conference on. IEEE, 2004, 4: 3099-3104.
    APPANA D K, ISLAM R, KHAN S A, et al. A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems[J]. Information Sciences, 2017, 418:91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6c037e1ce492ed7c523a66d2dda67b5
    OJO J A, OLADOSU J A. Effective smoke detection ising spatial-temporal energy and weber local descriptors in three orthogonal planes (WLD-TOP)[J]. Journal of Computer Science and Technology, 2018, 18(01):e05-e05.
    YE W, ZHAO J, WANG S, et al. Dynamic texture based smoke detection using surfacelet transform and HMT model[J]. Fire Safety Journal, 2015, 73:91-101. doi: 10.1016/j.firesaf.2015.03.001
    YUAN F. A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection[J]. Pattern Recognition, 2012, 45(12):4326-4336. doi: 10.1016/j.patcog.2012.06.008
    ZHAO Y, LI Q, GU Z. Early smoke detection of forest fire video using CS Adaboost algorithm[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):2121-2124. doi: 10.1016/j.ijleo.2015.05.082
    LI S, WANG B, GONG L, et al. A novel smoke detection algorithm based on MSER tracking[C]//Control and Decision Conference (CCDC), 2015 27th Chinese. IEEE, 2015: 5676-5681.
    FILONENKO A, HERNNDEZ D C, JO K H. Real-time smoke detection for surveillance[C]//Industrial Informatics (INDIN), 2015 IEEE 13th International Conference on. IEEE, 2015: 568-571.
    王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[J].北京: 北京航空航天大学出版社, 2013.

    WANG Xiaochuan, SHI Feng, YU Lei, et al. MATLAB neural network 43 case studies[J]. Beijing: Beihang University Press, 2013.
    HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[EB/OL].[2016-05-19]. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
    CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST), 2011, 2(3):27. http://d.old.wanfangdata.com.cn/Periodical/jdq201315008
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (894) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint