Volume 40 Issue 3
May  2019
Turn off MathJax
Article Contents
CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on information preservation network[J]. Journal of Applied Optics, 2019, 40(3): 440-446. doi: 10.5768/JAO201940.0302006
Citation: CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on information preservation network[J]. Journal of Applied Optics, 2019, 40(3): 440-446. doi: 10.5768/JAO201940.0302006

Image denoising algorithm based on information preservation network

doi: 10.5768/JAO201940.0302006
  • Received Date: 2018-09-11
  • Rev Recd Date: 2018-10-24
  • Publish Date: 2019-05-01
  • Due to various factors such as imaging equipment, the image will be disturbed by noise during imaging or sensing. Image denoising aims to reduce or eliminate the influence of noise on the image, which often leads to the loss of high-frequency information. In order to protect the edge information and texture details of the image while removing image noise, a convolution neural network with information preservation blocks with relatively low computational complexity is proposed to denoise the noisy image directly. The information preservation block extracts the mixed feature information of the local long path and the local short path by residual learning. Peak signal to noise ratio (PSNR/dB) and structural similarity index method (SSIM) are used to quantify the experimental results. The larger the two indexes, the better the denoising effect. Experiments show that the mean values of PSNR and SSIM can reach 30.36 dB and 0.828 0. Compared with other denoising algorithms, the two evaluation indexes are improved by 2.15 dB and 0.072 9 respectively. The proposed algorithm has good denoising effect for different kinds and different levels of noise, and the speed is better than the general algorithms compared, which contributes to the further development of the denoising based on convolutional neural networks.
  • loading
  • 吴海兵, 张良, 顾国华, 等.基于低照度三基色图像去噪及融合彩色图像增强方法研究[J].应用光学, 2018, 39(1):57-63. http://www.yygx.net/CN/abstract/abstract11063.shtml

    WU Haibing, ZHANG Liang, GU Guohua, et al. Color image enhancement based on LLL tricolor image denoising and fusion[J]. Journal of Applied Optics, 2018, 39(1):57-63. http://www.yygx.net/CN/abstract/abstract11063.shtml
    王敏, 周磊, 周树道, 等.基于峰值信噪比和小波方向特性的图像奇异值去噪技术[J].应用光学, 2013, 34(1):85-89. http://www.yygx.net/CN/abstract/abstract10136.shtml

    WANG Min, ZHOU Lei, ZHOU Shudao, et al. Image SVD denoising based on PSNR and wavelet directional feature[J]. Journal of Applied Optics, 2013, 34(1):85-89. http://www.yygx.net/CN/abstract/abstract10136.shtml
    BIJALWAN A, GOYAL A, SETHI N. Wavelet transform based image denoise using threshold approaches[J]. International Journal of Engineering & Advanced Technology, 2012(5):218-221. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b62c3d24d30471ffbf5bf1de30fdc991
    AHARON M, ELAD M, BRUCKSTEIN A. The K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. doi: 10.1109/TSP.2006.881199
    DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2013, 22(4):1620. doi: 10.1109/TIP.2012.2235847
    焦莉娟, 王文剑, 赵青杉, 等.近邻局部OMP稀疏表示图像去噪[J].中国图象图形学报, 2017, 22(11):1486-1492. doi: 10.11834/jig.170105

    JIAO Lijuan, WANG Wenjian, ZHAO Qingshan, et al. Nearest neighbor local OMP sparse representation for image denoising[J]. Journal of Image and Graphics, 2017, 22(11):1486-1492. doi: 10.11834/jig.170105
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. doi: 10.1109/TIP.2007.901238
    BANSAL M, DEVI M, JAIN N, et al. A proposed approach for biomedical image denoising using PCA_NLM[J]. International Journal of Bio-Science & Bio-Technology, 2014, 6(6):13-20.
    韩震, 王红斌, 余正涛, 等.双边非局部均值滤波图像去噪算法[J].传感器与微系统, 2016, 35(6):124-127. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201606036

    HAN Zhen, WANG Hongbin, YU Zhengtao, et al. Bilateral non-local mean filter image denoising algorithm[J]. Transducer and Microsystem Technologies, 2016, 35(6):124-127. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201606036
    HARMELING S, SCHULER C J, BURGER H C. Image denoising: Can plain neural networks compete with BM3D[C]//Providence, RI, USA: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2012: 2392-2399.
    PAREKH A, SELESNICK I W. Convex denoising using non-convex tight frame regularization[J]. IEEE Signal Processing Letters, 2015, 22(10):1786-1790. doi: 10.1109/LSP.2015.2432095
    ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[J]. 2011, 6669(5):479-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211874096
    高凯珺, 孙韶媛, 姚广顺, 等.基于深度学习的无人车夜视图像语义分割[J].应用光学, 2017, 38(3):421-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201703013

    GAO Kaijun, SUN Shaoyuan, YAO Guangshun, et al. Semantic segmentation of night vision images based on depth learning[J]. Journal of Applied Optics, 2017, 38(3):421-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201703013
    MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J].IEEE/Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5):530-549. doi: 10.1109/TPAMI.2004.1273918
    BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Single-image super-resolution via linear mapping of interpolated self-examples[J]. IEEE Transactions on Image Processing, 2014, 23(12):5334-47. doi: 10.1109/TIP.2014.2364116
    ZHANG K, GAO X, TAO D, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11):4544-4556. doi: 10.1109/TIP.2012.2208977
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1116) PDF downloads(23) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint