Volume 40 Issue 3
May  2019
Turn off MathJax
Article Contents
PEI Jiaxin, SUN Shaoyuan, WANG Yulan, LI Dawei, HUANG Rong. Nighttime environment perception of driverless vehicles based on improved YOLOv3 network[J]. Journal of Applied Optics, 2019, 40(3): 380-386. doi: 10.5768/JAO201940.0301004
Citation: PEI Jiaxin, SUN Shaoyuan, WANG Yulan, LI Dawei, HUANG Rong. Nighttime environment perception of driverless vehicles based on improved YOLOv3 network[J]. Journal of Applied Optics, 2019, 40(3): 380-386. doi: 10.5768/JAO201940.0301004

Nighttime environment perception of driverless vehicles based on improved YOLOv3 network

doi: 10.5768/JAO201940.0301004
  • Received Date: 2018-11-26
  • Rev Recd Date: 2019-01-10
  • Publish Date: 2019-05-01
  • Environmental perception is a key task of driverless vehicles at night. An improved YOLOv3 network was proposed to realize the detection of pedestrians and vehicles in infrared images captured by driverless vehicles at night. The problem of estimation of the moving direction of surrounding vehicles is transformed into the problem of estimation of the angle of the surrounding vehicle position. What's more, the network is fused with the depth estimation information to estimate the distance and speed of the surrounding vehicles. Therefore the driverless vehicles can obtain the driving intention of the surrounding vehicles at night. The network has the end-to-end advantage, in which an image is as the input, and the positions of the bounding boxes, the classes and the angle estimation results of the detecting targets are returned directly at the output layer. Moreover, the depth estimation information is combined with the above information to obtain the distance and speed of the surrounding vehicle. The experimental results show that the speed of target detection in the infrared images captured by driverless vehicle is 0.04 s/frame. The effect of angle and speed prediction is good, and the accuracy and real-time performance meet the requirements of practical application.
  • loading
  • KIESER D. Driverless vehicles and their impact on your portfolio[J]. Equity, 2018, 32(1): 4.
    陈琪.面向无人驾驶的环境感知技术研究[J].科技经济导刊, 2018, 26(26):77. http://www.cnki.com.cn/Article/CJFDTotal-JJKJ201826065.htm

    CHEN Qi. Research on environment-aware technology for unmanned driving[J]. Science and Technology Economic Guide, 2018, 26 (26): 77. http://www.cnki.com.cn/Article/CJFDTotal-JJKJ201826065.htm
    邹芳喻, 孙韶媛, 席林, 等.具有深度视觉感的车载红外图像彩色化方法[J].激光与光电子学进展, 2013, 50(1):011101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201301013

    ZOU Fangyu, SUN Shaoyuan, XI Lin, et al. A method of colorization of vehicle infrared image with deep visual sense[J]. Laser & Optoelectronics Progress, 2013, 50(1):011101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201301013
    高凯珺, 孙韶媛, 姚广顺, 等.基于深度学习的无人车夜视图像语义分割[J].应用光学, 2017, 38(03):421-428. doi: 10.5768/JAO201738.0302007

    GAO Kaijun, SUN Shaoyuan, YAO Guangshun, et al. Semantic segmentation of night vision images for unmanned vehicles based on deep learning[J]. Journal of Applied Optics, 2017, 38(03):421-428. doi: 10.5768/JAO201738.0302007
    ANDREOPOULOS A, TSOTSOS J. 50 years of object recognition: directions forward[J]. Computer Vision and Image Understanding, 2013, 117(8):827-891 doi: 10.1016/j.cviu.2013.04.005
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Newral Information Processing Systems.[s.n.]: [S.l.], 2015: 91-99.
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. USA: IEEE, 2016: 779-788.
    REDMON J, FARHADI A. Yolov3: an incremental improvement[J/OL]. USA:University of Washington, 2018[2019-05-15]. http://arxiv.org/abs/1804.02767.
    许路, 赵海涛, 孙韶媛.基于深层卷积神经网络的单目红外图像深度估计[J].光学学报, 2016, 36(7):0715002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201607025

    XU Lu, ZHAO Haitao, SUN Shaoyuan.Deep estimation of monocular infrared image based on deep convolutional neural network[J]. Acta Optica Sinica, 2016, 36(7). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201607025
    AGRAWAL P, GIRSHICK R, MALIK J. Analyzing the performance of multilayer neural networks for object recognition: ECCV 2014: 13th European Canference on Computer Vision, Zurich, September 6-12, 2014[C]. Benlin: Springer, C2014.
    REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. USA: IEEE, 2016: 394.
    LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas: IEEE, 2016: 936-944.
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. USA: IEEE, 2015: 3431-3440.
    姚广顺, 孙韶媛, 方建安, 等.基于红外与雷达的夜间无人车场景深度估计[J].激光与光电子学进展, 2017, 54(12):164-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201712019

    YAO Guangshun, SUN Yiyuan, FANG Jian'an at al.Infrared and radar based depth estimation of night unmanned vehicle scene[J]. Laser & Optoelectronics Progress, 2017, 54(12):164-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201712019
    JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia.[S.l.]: arXiv, 2014: 675-678.
    Dalal N, Triggs B. Histograms of oriented gradients for human detection[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 886-893. http://cn.bing.com/academic/profile?id=0796294dc798795c12f84f5b2edabaef&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1369) PDF downloads(47) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint