LI Li, ZHANG Kaidi. Design of aerospace optical imaging system with high-resolution and ultra-low distortion[J]. Journal of Applied Optics, 2019, 40(3): 363-368. DOI: 10.5768/JAO201940.0301001
Citation: LI Li, ZHANG Kaidi. Design of aerospace optical imaging system with high-resolution and ultra-low distortion[J]. Journal of Applied Optics, 2019, 40(3): 363-368. DOI: 10.5768/JAO201940.0301001

Design of aerospace optical imaging system with high-resolution and ultra-low distortion

  • In space rendezvous, docking and other high-precision positioning applications, optical imaging system is required to have the characteristics of high resolution, ultra-low distortion and large field of view. Therefore, an aerospace objective which could meet the above requirements was designed. The complex double-Gaussian structure was used to design the quasi image space telecentric optical path. The system consisted of 9 lenses and used the radiation-resistant glass to reduce the corrosiveness of ionizing radiation.Moreover the filter was used to avoid the influence of short-wave radiation on the system, the aspheric surface was introduced to improve the imaging accuracy, and finally the tolerance analysis of the imaging objective was carried out. The focal length of the designed system is 24 mm, the relative aperture is F/2.2, the work waveband is 600 nm~800 nm, the full field of view(FOV) is 35°. The design results show that the modulation transfer funciton (MTF) of each FOV of the objective lens designed by this method is all above 0.3 at 128 lp/mm and the distortion value is 0.007 2%, which meets the design index requirements.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return