Optical design of VIS/MWIR dual-band common-aperture system
-
摘要: 为了提高光电探测设备目标探测与识别的能力,设计了一套可见/中波双波段共口径光学系统。根据实际工程经验总结了一套分段设计、组合优化的光学设计方法,通过合理地分配光焦度,分段选择合适的初始结构,再现了双波段共口径光学系统初始结构的设计过程;结合CodeV和TracePro软件量化了制冷型中波红外探测系统的冷反射现象,并且通过外场试验成像验证了分析结论的正确性。双波段共口径光学系统最大视场达到1.25°,畸变小于0.1%,可以在环境温度−30 ℃~50 ℃下工作,中波红外探测系统实现了100%冷光阑匹配,可见光探测系统可以实现大、小视场的切换,双波段成像系统具有调焦、调光功能。该系统成像质量良好、可加工性好、装配难度小、工程可实施性强。Abstract: In order to improve the ability of target detection and recognition of the photoelectric detection equipment, a set of VIS/MWIR dual-band common-aperture optical system was designed. Based on the practical engineering experience, an optical design method with segmented design and combinatorial optimization was summarized, and the design process of the initial structure for the dual-band common-aperture optical system was reconstructed by reasonably distributing the focal power and selecting the appropriate initial structure. In addition, combined with CodeV and TracePro soft, the narcissus phenomenon of the refrigeration mid-wave infrared detection system was quantized, and the validity of the analysis conclusion was verified by the field test imaging. In the dual-band common-aperture optical system, the maximum field of view is 1.25°, and the distortion is less than 0.1%, which can work at ambient temperature −30℃~50℃. The 100% cold shield efficiency is realized by the mid-wave infrared detection system, and the switching of the size of the field of view is realized by the visible light detection system. The dual-band optical system has the functions of focusing and dimming, which shows good imaging quality, good processability, small assembly difficulty, and strong engineering implementability.
-
表 1 主系统的初始结构参数
Table 1 Initial structural parameters of primary optical system
参量 R1 R2 K1 K2 d 数值 −1 350 −434.286 −1 −2.498 7 −513 -
[1] 张振轩, 雷有生, 马佳光, 等. 778光电经纬仪总体设计[J]. 光电工程,1986,13(1):1-17.ZHANG Zhenxuan, LEI Youshen, MA Jiaguang, et al. Overall design of 778 opto-electronic theodolite[J]. Opto-electronic Engineering,1986,13(1):1-17. [2] 程景全. 天文望远镜原理和设计[M]. 北京: 中国科学技术出版社, 2002.CHENG Jingquan. Principles of astronomical telescope design [M]. Beijing: China Science and Technology Press, 2002. [3] 邢振冲. 灵巧型长焦多波段共口径光学系统的研究[D]. 北京: 中国科学院大学, 2018.XING Zhenchong. Research on miniature telefocal multiband common aperture optical system [D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2018. [4] 陈娟, 郭劲. 现代靶场光电测量工程的发展现状[J]. 光机电信息,2002(1):22-27. doi: 10.3969/j.issn.1007-1180.2002.01.004CHEN Juan, GUO Jin. The present situation of the development of the photoelectric measurement project in the modern range[J]. OME Information,2002(1):22-27. doi: 10.3969/j.issn.1007-1180.2002.01.004 [5] 刘钧, 陈阳. 可见光/红外双波段大视场共口径齐焦光学系统[J]. 西安工业大学学报,2014,34(2):87-93.LIU Jun, CHEN Yang. Visible/infrared dual-band large field shared-aperture and parfocal optical system[J]. Journal of Xi’an Technological University,2014,34(2):87-93. [6] 郭钰琳, 于洵, 蔡珂珺, 等. 可见光/中波红外双波段共口径光学系统设计[J]. 红外技术,2018,40(2):125-132.GUO Yulin, YU Xun, CAI Kejun. Optical design of TV/IR dual-band common-aperture system[J]. Infrared Technology,2018,40(2):125-132. [7] 刘莹奇. 轻型车载大口径光电跟测光学设计[J]. 光学技术,2012,38(5):583-587.LIU Yingqi. Optical design of electro-optical vehicle-based tracking system with large aperture and lightweight[J]. Optical Technique,2012,38(5):583-587. [8] 韩培仙, 金光, 钟兴. 一种新型微小视频卫星光学系统设计[J]. 应用光学,2015,36(5):691-697. doi: 10.5768/JAO201536.0501005HAN Peixian, JING Guang, ZHONG Xing. Design of new type of micro video-capable satellite optical system[J]. Journal of Applied Optics,2015,36(5):691-697. doi: 10.5768/JAO201536.0501005 [9] 白瑜, 邢廷文, 蒋亚东, 等. 长焦距高分辨率红外两档变焦光学系统设计[J]. 红外与激光工程,2014,43(8):2590-2594.BAI Yu, XING Tingwen, JIANG Yadong, et al. Design of infrared dual field of view optical system with long focal length and high resolution[J]. Infrared and Laser Engineering,2014,43(8):2590-2594. [10] 余怀之. 红外光学材料[M]. 北京: 国防工业出版社, 2007.YU Huaizhi. Infrared optical material [M]. Beijing: National Defense Industry Press, 2017. [11] ATAD-ETTEDGUI E, WORSWICK S P. Optical design concept of the 4-m visible and infrared survey telescope for astronomy[J]. SPIE,2003,4842:95-105. [12] TIAN Qijie, CHANG Songtao, LI Zhou, et al. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures[J]. Infrared Physics & Technology,2017,81:1-6. [13] CHANG Songtao, ZHANG Yaoyu, SUN Zhiyuan, et al. Method to remove the effect of ambient temperature on radiometric calibration[J]. Applied Optics,2014,53(27):6274-6282. doi: 10.1364/AO.53.006274 [14] BREAULT R P. Problems and techniques in stray radiation suppression[J]. SPIE,1977,107:2-23. [15] 张鹏, 罗长江, 熊钟秀. 制冷型红外光学系统冷反射的逆光路分析[J]. 电光与控制,2013,20(6):66-69. doi: 10.3969/j.issn.1671-637X.2013.06.015ZHANG Peng, LUO Changjiang, XIONG Zhongxiu. Analysis of inverse path tracing rays of narcissus for cooled infrared optical system[J]. Electronics Optics & Control,2013,20(6):66-69. doi: 10.3969/j.issn.1671-637X.2013.06.015 -