Research on combined elevation measurement method based on physical horizontal reference
-
摘要: 针对空间坐标点相对于测量基准的高程测量准确性问题,提出一种基于物理水平基准的组合式高程测量方法。利用激光三角测量原理及其测量光路的几何特性,搭建了物理水平基准的高程测量系统,在朗伯散射光场中,分析了倾角变化对激光光能质心偏移量的影响,建立了相应的误差修正模型,利用倾角传感器实现了高程测量的倾角误差补偿,自主研制了标定平台对本文提出的高程测量系统进行标定验证试验。结果表明:本文提出的组合式高程测量方法能够在500 mm测量量程下将重复性测量误差控制在±20 μm的波动范围内,相较于单一激光位移传感器测量方式,其组合式高程测量误差波动量大幅度降低,能够适应空间坐标点在任意姿态下的精准测量,有效改善激光位移传感器在高程测量领域的性能,使其测量结果更为真实有效。Abstract: In response to the issue of accuracy in measuring the elevation of spatial coordinate points relative to a reference point, a new elevation measurement method based on a physical horizontal reference plane is proposed. By utilising the concepts of laser triangulation and leveraging the geometric features of measuring light pathways, a high-precision elevation measurement system was built. This technique employed a physical horizontal reference. Within a Lambertian scattering light field, an analysis was done to determine the influence of tilt angle modifications on the centroid displacement of laser energy. An related error correction model was built, which permitted tilt angle compensation for elevation data by the use of a tilt angle sensor. Additionally, an autonomously constructed calibration platform was deployed for verification studies targeted at calibrating the suggested elevation measuring system. The findings demonstrate that the proposed combined elevation measuring technique achieves a repeatable measurement error within a fluctuation range of ±20 μm across a 500 mm measurement range. Compared to the single laser displacement sensor measurement methodology, the combined elevation measuring method considerably lowers the fluctuation of measurement errors. It is capable of supporting precise measurements of spatial coordinate points in any orientation and effectively boosting the performance of laser displacement sensors in the area of elevation measurement, consequently giving more genuine and effective measurement results.
-
表 1 倾角实验数据记录
Table 1 Record of inclination test data
X&Y倾角变化 测量差值 修正后差值 $ \alpha $倾角修正/mm $ \beta $倾角修正/mm $ \alpha $/° $ \beta $/° $ {Z_\alpha } $/mm $ {Z_\beta } $/mm $ Z_\alpha ' $/mm $ Z_\beta ' $/mm −2.454 2 −3.547 8 29.582 6 29.511 4 29.604 6 29.527 9 −0.022 0 −0.016 5 −1.438 2 −2.704 3 29.247 4 29.604 0 29.271 7 29.619 1 −0.024 2 −0.015 1 −0.466 3 −1.680 8 29.411 7 28.955 1 29.437 8 28.968 9 −0.026 1 −0.013 8 0.556 1 −0.657 0 28.907 1 30.137 4 28.934 7 30.149 5 −0.027 6 −0.012 1 1.533 5 0.336 9 28.867 8 29.786 9 28.895 7 29.798 2 −0.027 9 −0.011 3 2.516 4 1.314 1 29.185 1 29.969 9 29.212 0 29.981 6 −0.026 9 −0.011 7 3.518 0 2.314 0 29.605 9 29.084 8 29.631 2 29.0980 −0.025 3 −0.013 2 -
[1] 李国鹏, 石林峰, 张建华, 等. 优化的长距离跨海高程传递测量方法研究[J]. 测绘科学,2022,47(12):90-95.LI Guopeng, SHI Linfeng, ZHANG Jianhua, et al. Research on an optimized long-distance sea-crossing method of elevation transfer measurement[J]. Science of Surveying and Mapping,2022,47(12):90-95. [2] 隋少春, 朱绪胜. 飞机整机装配质量数字化测量技术[J]. 中国科学:技术科学,2020,50(11):1449-1460. doi: 10.1360/SST-2020-0049SUI Shaochun, ZHU Xusheng. Digital measurement technique for evaluating aircraft final assembly quality[J]. Scientia Sinica (Technologica),2020,50(11):1449-1460. doi: 10.1360/SST-2020-0049 [3] 叶柳康, 叶文华, 杨高杰, 等. 线激光传感器测量系统的安装姿态标定方法[J]. 组合机床与自动化加工技术,2022(7):122-126.YE Liukang, YE Wenhua, YANG Gaojie, et al. Calibration method for installation attitude of line laser sensor measurement system[J]. Modular Machine Tool & Automatic Manufacturing Technique,2022(7):122-126. [4] 秦宇, 黄翔, 邓正平, 等. 基于激光测距的大部件对接方法及误差分析[J]. 计算机集成制造系统,2021,27(3):728-738.QIN Yu, HUANG Xiang, DENG Zhengping, et al. Novel posture alignment method and error analysis for large component assembly based on laser range sensing[J]. Computer Integrated Manufacturing Systems,2021,27(3):728-738. [5] 王子辰, 张爱梅. 面向特大齿轮的激光跟踪测量精度提升方法[J]. 红外与激光工程,2021,50(11):176-183.WANG Zichen, ZHANG Aimei. Laser tracking measurement accuracy improvement method for mega gear[J]. Infrared and Laser Engineering,2021,50(11):176-183. [6] 马国鹭, 刘丽贤, 赵斌. 基于无衍射光的空间入射角测量及其自动标定[J]. 仪器仪表学报,2016,37(8):1906-1912.MA Guolu, LIU Lixian, ZHAO Bin. Measurement and automatic calibration of spatial incident angle based on non-diffracting beam[J]. Chinese Journal of Scientific Instrument,2016,37(8):1906-1912. [7] NAN Z J, TAO W, ZHAO H. Automatic optical structure optimization method of the laser triangulation ranging system under the Scheimpflug rule[J]. Optics Express,2022,30(11):18667. doi: 10.1364/OE.458076 [8] 高春峰, 魏国, 王琦, 等. 一维激光多普勒测速仪/单轴旋转惯导组合车载高程测量方法 (特邀)[J]. 红外与激光工程,2022,51(12):9-17.GAO Chunfeng, WEI Guo, WANG Qi, et al. Height measurement method based on one-dimensional laser Doppler velocimeter and integrated navigation system of single-axis rotation inertial navigation system (invited)[J]. Infrared and Laser Engineering,2022,51(12):9-17. [9] 成益品, 宋神友, 董理科, 等. 一种新型长距离精密跨海高程传递测量觇标的设计及在深中通道工程中的应用[J]. 隧道建设 (中英文),2022,42(11):1942-1946.CHENG Yipin, SONG Shenyou, DONG Like, et al. Design of a novel and precise long-distance cross-sea elevation survey beacon and its application in Shenzhen-Zhongshan link[J]. Tunnel Construction,2022,42(11):1942-1946. [10] 何林, 马国鹭, 宋子军, 等. 大尺度阻隔空间姿态组合测量方法研究[J]. 应用光学,2022,43(1):95-99. doi: 10.5768/JAO202243.0103004HE Lin, MA Guolu, SONG Zijun, et al. Attitude combined measurement method in large-scale obstructed space[J]. Journal of Applied Optics,2022,43(1):95-99. doi: 10.5768/JAO202243.0103004 [11] 郝建新, 王艳洲, 李德峰. 综述三角高程测量方法及其应用[J]. 测绘与空间地理信息,2013,36(4):173-175.HAO Jianxin, WANG Yanzhou, LI Defeng. Review and application of the trigonometric leveling measurement method[J]. Geomatics & Spatial Information Technology,2013,36(4):173-175. [12] 许志强. 激光跟踪仪在施工高程测量中的应用研究[J]. 建设机械技术与管理,2022,35(6):127-130.XU Zhiqiang. Application of laser tracker in construction elevation survey[J]. Construction Machinery Technology & Management,2022,35(6):127-130. [13] 孙彬, 李兵. 一种量化的激光位移传感器倾角误差补偿模型[J]. 仪器仪表学报,2015,36(5):996-1004.SUN Bin, LI Bing. A quantitative error compensation model of the inclination angle of the laser displacement sensor[J]. Chinese Journal of Scientific Instrument,2015,36(5):996-1004. [14] KIENLE P, BATARILO L, AKGÜL M, et al. Optical setup for error compensation in a laser triangulation system[J]. Sensors (Basel),2020,20(17):E4949. doi: 10.3390/s20174949 [15] 陈浩, 邾继贵, 薛彬. 粗糙表面散射特性对基于PSD的激光位移传感器测量精度的影响[J]. 中国激光,2013,40(8):165-171.CHEN Hao, ZHU Jigui, XUE Bin. Impact of rough surface scattering characteristics to measurement accuracy of laser displacement sensor based on position sensitive detector[J]. Chinese Journal of Lasers,2013,40(8):165-171. [16] 王少清, 庄葆华, 张文伟. 基于朗伯定律重建光学三角法测位移原理公式[J]. 光学学报,1996,16(12):1802-1808.WANG Shaoqing, ZHUANG Baohua, ZHANG Wenwei. Rebuilding principle formula of optical triangulation method of displacement measurement in view of the Lambert’s theory[J]. Acta Optica Sinica,1996,16(12):1802-1808. -