Highly-stable solar irradiance calibration light source based on laser galvanometer
-
摘要: 获取高均匀性、高稳定性的光源是太阳绝对辐射计辐射照度定标的关键技术,实验室现有光源无法同时满足均匀性与稳定性。因此本文提出通过振镜扫描的方式来获取高均匀、高稳定的面光源方案。首先,建立二维的激光扫描模型,设计以快速扫描振镜和离轴抛面镜为核心的光学系统;其次,根据振镜扫描系统建立驱动,开发控制软件,设计三种扫描路径;最后,选取合适的扫描路径进行实验验证并开展其均匀性、稳定性等方面的测试。实验结果表明:振镜扫描光斑的不均匀性优于±1%,发散角小于±0.26°,光源稳定性优于0.02%。验证了激光振镜扫描光源可作为绝对辐射计辐照度定标光源的可行性,为实现高精度太阳辐照度定标提供关键技术支撑及实验依据。Abstract: Choosing the light source with high uniformity and high stability is the key technology for the radiometric calibration of solar absolute radiometer. The existing light source in the laboratory cannot meet the uniformity and stability at the same time. Therefore, this paper proposes to obtain a highly uniform and stable surface light source through galvanometer scanning. Firstly, the two-dimensional laser scanning mode is established, and the optical system with fast scanning galvanometer and off-axis mirror as the core is designed; Secondly, according to the galvanometer scanning system, the driver is established, the control software is developed, and three scanning paths are designed; Finally, the appropriate scanning path is selected for experimental verification and its uniformity and stability are tested. The experimental results show that the non-uniformity of the scanning spot of the galvanometer is better than ± 1%, the divergence angle is less than ± 0.26°, and the stability of the light source is better than 0.02%. The feasibility of the laser galvanometer scanning light source as the irradiance calibration light source of the absolute radiometer is verified, which provides key technical support and experimental basis for achieving high-precision solar irradiance calibration.
-
表 1 光斑不均匀性测试数据
Table 1 Test data of spot nonuniformity
区域 信号值(DN) 1 156 680.99 2 156 316.47 3 154 352.91 4 156 778.59 5 157 050.30 6 155 495.04 7 156 448.77 8 156 295.26 9 155 336.07 表 2 太阳辐射计照度测试数据
Table 2 Test data of solar radiometer illuminance
次数 照度 1 1 431.19 W·m−2 2 1 430.57 W·m−2 3 1 430.77 W·m−2 4 1 430.71 W·m−2 5 1 431.23 W·m−2 6 1 431.12 W·m−2 7 1 431.26 W·m−2 8 1 430.55 W·m−2 9 1 431.10 W·m−2 10 1 431.09 W·m−2 平均值 1 430.96 W·m−2 标准差 0.28 W·m−2 相对标准差 0.000 19% -
[1] SOLANKI S K, KRIVOVA N A, HAIGH J D. Solar irradiance variability and climate[J]. Annual Review of Astronomy and Astrophysics,2013,51:311-351. doi: 10.1146/annurev-astro-082812-141007 [2] STEPHENS G L, LI J, WILD M, et al. An update on earth's energy balance in light of the latest global observations[J]. Nature Geoscience,2012,5(10):691-696. doi: 10.1038/ngeo1580 [3] FOX N, GREEN P. Traceable radiometry underpinning terrestrial-and helio-studies (truths): an element of a space-based climate and calibration observatory[J]. Remote Sensing,2020,12(15):2400. doi: 10.3390/rs12152400 [4] 卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术[J]. 遥感学报,2020,24(6):672-680.LU Naimeng, DING Lei, ZHENG Xiaobing, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing[J]. Journal of Remote Sensing,2020,24(6):672-680. [5] 衣小龙, 方伟, 李叶飞, 等. 太阳辐照度绝对辐射计的定标新方法[J]. 红外与激光工程,2016,45(9):156-162.YI Xiaolong, FANG Wei, LI Yefei, et al. New calibration method of solar irradiance absolute radiometer[J]. Infrared and Laser Engineering,2016,45(9):156-162. [6] 吴铎, 王凯, 叶新, 等. 空间低温绝对辐射计研究[J]. 发光学报,2019,40(8):1015-1021. doi: 10.3788/fgxb20194008.1015WU Duo, WANG Kai, YE Xin, et al. Space cryogenic absolute radiometer[J]. Chinese Journal of Luminescence,2019,40(8):1015-1021. doi: 10.3788/fgxb20194008.1015 [7] 庞伟伟, 郑小兵, 李健军, 等. 低温绝对辐射计不同定标光路的比对实验[J]. 红外与激光工程,2016,45(3):250-255.PANG Weiwei, ZHENG Xiaobing, LI Jianjun, et al. Comparison experiment of cryogenic radiometer of different calibration optical path[J]. Infrared and Laser Engineering,2016,45(3):250-255. [8] THUILLIER G, ZHU P, SNOW M, et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. Light:Science & Applications,2022,11:79. [9] 张俊超, 徐楠, 许宁, 等. 绝对辐射计溯源至低温辐射计实验测试[J]. 光学学报,2022,42(5):105-110.ZHANG Junchao, XU Nan, XU Ning, et al. Experimental study on traceability of absolute radiometer to cryogenic radiometer[J]. Acta Optica Sinica,2022,42(5):105-110. [10] 肖岚, 袁银麟, 翁建文, 等. 基于振镜的准直光源功率稳定控制器[J]. 光学 精密工程,2022,30(24):3189-3197. doi: 10.37188/OPE.20223024.3189XIAO Lan, YUAN Yinlin, WENG Jianwen, et al. Power stability controller for collimating-light source based on scanlab[J]. Optics and Precision Engineering,2022,30(24):3189-3197. doi: 10.37188/OPE.20223024.3189 [11] YE X, YI X L, LIN C, et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. Remote Sensing,2020,12(17):2856. doi: 10.3390/rs12172856 [12] SONG B Q, YE X, FINSTERLE W, et al. The Fengyun-3E/joint total solar irradiance absolute radiometer: instrument design, characterization, and calibration[J]. Solar Physics,2021,296(3):1-18. [13] LI X, LIU B, MEI X S, et al. Development of an in-situ laser machining system using a three-dimensional galvanometer scanner[J]. Engineering,2020,6(1):68-76. doi: 10.1016/j.eng.2019.07.024 [14] ASADA N, MATSUKI H, MINAMI K, et al. Silicon micromachined two-dimensional galvano optical scanner[J]. IEEE Transactions on Magnetics,1994,30(6):4647-4649. doi: 10.1109/20.334177 [15] 徐亮亮. 二维激光振镜扫描控制系统设计[D]. 长春: 长春理工大学, 2013.XU Liangliang. Design of scanning control system for two-dimensional laser galvanometer[D]. Changchun: Changchun University of Science and Technology, 2013. [16] 何坚, 郭泽龙, 罗松保, 等. 基于PMAC时基控制的离轴抛物面超精密加工技术[J]. 光学精密工程,2021,29(8):1891-1898. doi: 10.37188/OPE.20212908.1891HE Jian, GUO Zelong, LUO Songbao, et al. Ultra-precision machining technology of off-axis paraboloid surface based on PMAC time-based control[J]. Optics and Precision Engineering,2021,29(8):1891-1898. doi: 10.37188/OPE.20212908.1891 [17] 刘作业, 李露, 胡碧涛. 离轴抛物面镜对超短激光脉冲紧聚焦特性的研究[J]. 激光技术,2012,36(5):657-661.LIU Zuoye, LI Lu, HU Bitao. Focusing property for ultra-short pulse laser reflected by off-axis parabolic mirrors[J]. Laser Technology,2012,36(5):657-661. [18] KOPP G, HEUERMAN K, HARBER D, et al. The TSI radiometer facility: absolute calibrations for total solar irradiance instruments[C]//Proceedings of Optical Engineering+Applications. San Diego: SPIE, 2007, 6677: 94-105. [19] 张国玉, 吕文华, 贺晓雷, 等. 太阳模拟器辐照均匀性分析[J]. 中国光学与应用光学,2009,2(1):41-45.ZHANG Guoyu, LYU Wenhua, HE Xiaolei, et al. Analysis on irradiation uniformity of sun simulator[J]. Chinese Journal of Optics and Applied Optics,2009,2(1):41-45. [20] SONG B Q, FINSTERLE W, YE X, et al. Calibration and parameter corrections for the new generation of the TSI monitor on the FY-3E satellite[J]. Astrophysics and Space Science,2021,366(3):1-8. [21] 禹秉熙, 姚海顺, 方伟. 绝对辐射计预测辐射电补偿的快速测量方法[J]. 光学学报,2005,25(6):786-790. doi: 10.3321/j.issn:0253-2239.2005.06.014YU Bingxi, YAO Haishun, FANG Wei. Rapid measurement method of absolute radiometer by using forecast radiation in electrically heating compensation[J]. Acta Optica Sinica,2005,25(6):786-790. doi: 10.3321/j.issn:0253-2239.2005.06.014 -