Refract-reflect laser particle size measurement method
-
摘要: 激光粒度仪因其快速、非接触等优点被广泛应用于各领域的粒度分布测量,但颗粒散射光的角分布与粒度大小关系复杂。为了获得不同粒度下的相对精度一致,会造成粒度分布测量范围小、无法满足宽分布粒度测量要求等问题。根据Mie散射近似的菲涅尔原理,提出采用折反式光路,将颗粒散射信号由分光镜分成两束,经两组组合式镜头和2个光电探测器分别采集透射和反射的散射信号,将信号组合后反演得到颗粒粒度分布,从而提高可测粒度范围。采用两种标准粒子及其混合物进行了实验,结果表明,单种标准粒子测量结果的体积中位径D50的测量相对误差都不大于7.9%;对混合粒子也能够得到正确的峰值分布。Abstract: Laser particle size analyzer has been widely used in the measurement of particle size distribution in various fields due to its advantages of fast speed and non-contact. However, the relationship between the angular distribution of scattered light and particle size is complex. In order to obtain the consistent relative accuracy under different particle sizes, the measurement range of particle size distribution will be small and cannot meet the requirements of wide distribution particle size measurement. According to the Fresnel principle of Mie scattering approximation, it was proposed to use the catadioptric optical path. The particle scattering signal was divided into two beams by the splitter, and the transmitted as well as reflected scattering signals were collected by two sets of compound lenses and two photodetectors, respectively. The combined signal was inversed to obtain the particle size distribution, thereby improving the range of particle size measurement. Two kinds of standard particles and their mixtures were used in the experiment. The results show that the relative error of the volume median diameter D50 measured by a single standard particle is not greater than 7.9%, and the correct peak distribution can also be obtained for mixed particles.
-
表 1 单分散的标准粒子测量结果
Table 1 Measurement results of monodisperse standard particles
样品 GBW(E)120049 GBW(E)120025 测量值/μm 105.0 16.3 104.9 16.3 106.1 16.4 105.0 16.2 105.0 16.4 参考值/μm 104.8 15.1 $\overline {{{\text{D}}_{\text{i}}}} $/μm 105.2 16.3 Δ/% 0.4 7.9 -
[1] ULLAH R, ABDULLAH R A, KASSIM A, et al. Effectiveness of laser diffraction method for particle size evaluation of residual soil[J]. Indian Geotechnical Journal,2022,52(6):1476-1486. doi: 10.1007/s40098-022-00615-1 [2] LIU S H, CHENG Y F, MENG X R, et al. Influence of particle size polydispersity on coal dust explosibility[J]. Journal of Loss Prevention in the Process Industries,2018,56:444-450. doi: 10.1016/j.jlp.2018.10.005 [3] KALČÍKOVÁ G, ALIČ B, SKALAR T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater[J]. Chemosphere,2017,188:25-31. doi: 10.1016/j.chemosphere.2017.08.131 [4] 刘芳, 佟巍. 基于粒子系统的实时降雨、降雪模拟[J]. 计算机系统应用,2015,24(6):19-23.LIU Fang, TONG Wei. Real-time simulation of rain and snow based on particle system[J]. Computer Systems and Applications,2015,24(6):19-23. [5] 左晨泽, 吕且妮, 葛宝臻. 气溶胶颗粒折射率在光学粒径测量中的影响[J]. 光学精密工程,2017,25(7):1777-1782.ZUO Chenze, LYU Qieni, GE Baozhen. Impact of refractive index of aerosol particles on particle diameter optical measurement[J]. Optics and Precision Engineering,2017,25(7):1777-1782. [6] SUI X W, LI Y, HU X B, et al. Development progress and key technologies of laser particle size analyzer[J]. Journal of Electronic Measurement and Instrument,2016,30(10):1449-1459. [7] 胡华, 张福根, 吕且妮, 等. 激光粒度仪的测量上限[J]. 光学学报,2018,38(4):355-361.HU Hua, ZHANG Fugen, LYU Qieni, et al. Measurement upper limit of laser particle size analyzer[J]. Acta Optica Sinica,2018,38(4):355-361. [8] 刘树, 张兆芝, 潘志东, 等. 国内外激光粒度仪结构与性能介绍[J]. 中国仪器仪表,2012(1):63-66.LIU Shu, ZHANG Zhaozhi, PAN Zhidong, et al. Introduction of laser particle size analyzer structure and characteristics[J]. China Instrumentation,2012(1):63-66. [9] 董青云, 范继来. 一种单光束双镜头激光粒度仪: CN201277938Y[P]. 2009-07-22[引用日期]. https://zhuanli.tianyancha.com/7b6c7bab33ad4688aa356d13a2185d0b.DONG Qingyun, FAN Jilai. Single-beam double-lens laser particle analyzer: CN201277938Y[P]. 2009-07-22[引用日期]. https://zhuanli.tianyancha.com/7b6c7bab33ad4688aa356d13a2185d0b. [10] 蔡小舒, 苏明旭. 一种多样品池激光粒度仪: CN201903495U[P]. 2011-07-20[引用日期]. https://zhuanli.tianyancha.com/4eefad7f436c4b8085ef78131e193b97.CAI Xiaoshu, SU Mingxu. Laser granulometer with multiple sample cells: CN201903495U[P]. 2011-07-20[引用日期]. https://zhuanli.tianyancha.com/4eefad7f436c4b8085ef78131e193b97. [11] 王亚民, 张婧雯. 一种逆傅里叶激光测量系统的研究[J]. 激光与光电子学进展,2015,52(2):160-164.WANG Yamin, ZHANG Jingwen. Study of an reverse Fourier laser measurement system[J]. Laser and Optoelectronics Progress,2015,52(2):160-164. [12] 于双双, 杜吉, 史宣. 激光粒度仪光学系统设计方法[J]. 红外与激光工程,2014,43(6):1735-1739.YU Shuangshuang, DU Ji, SHI Xuan. Particle size analyzer’s optical system design[J]. Infrared and Laser Engineering,2014,43(6):1735-1739. [13] 潘林超, 葛宝臻, 张福根. 基于环形样品池的激光粒度测量方法[J]. 光学学报,2017,37(10):303-311.PAN Linchao, GE Baozhen, ZHANG Fugen. Laser particle size measurement based on annular sample cell[J]. Acta Optica Sinica,2017,37(10):303-311. [14] 许人良. 颗粒表征的光学技术及应用[M]. 北京: 化学工业出版社, 2022: .XU Renliang. Optical technology and applications of particle characterization[M]. Beijing: Chemical Industry Press, 2022: . [15] 葛宝臻, 李文超, 马云峰, 等. 基于四象限探测的激光粒度仪自动对中技术[J]. 光学精密工程,2010,18(11):2384-2389.GE Baozhen, LI Wenchao, MA Yunfeng, et al. Automatic centering of laser particle size analyzers based on four-quadrant construction[J]. Optics and Precision Engineering,2010,18(11):2384-2389. [16] 魏永杰, 魏耀林, 葛宝臻. 两探测面结构激光粒度仪的接收光路设计[J]. 中国粉体技术,2009,15(1):8-10. doi: 10.3969/j.issn.1008-5548.2009.01.003WEI Yongjie, WEI Yaolin, GE Baozhen. Optical receiver design of laser particle sizer with two detecting planes[J]. China Powder Science and Technology,2009,15(1):8-10. doi: 10.3969/j.issn.1008-5548.2009.01.003 [17] 魏文晟, 魏永杰, 车进超. 基于变尺度算法的粒度分布求解方法[J]. 中国粉体技术,2020,26(4):28-32.WEI Wensheng, WEI Yongjie, CHE Jinchao. Variable-scale algorithm to invert particle size distribution[J]. China Powder Science and Technology,2020,26(4):28-32. -