Thermal effect analysis of all-solid-state solar pumped laser
-
摘要: 太阳光泵浦激光器是将太阳光直接转化为激光的装置,具有能量转换环节少、效率高、结构简单可靠、性能稳定以及无污染等优点。对应用于空间环境(4 K)的全固态太阳光泵浦激光器进行了建模,并对泵浦太阳光收集阶段进行了热效应分析。先后考虑两种安装底座和四种太阳光线偏转情况,运用ANSYS Workbench@热分析软件分别进行了稳态热分析。针对第一种情况得到的可行性验证,提出了下一步的改进优化意见,并初步设想进行实际模型搭建和测试。针对第二种不可行情况,提出了几种可能的改进措施,并对未来的工作进行了展望。该研究为太阳光泵浦激光器在空间环境中的实际应用提供了一种全新的、采用全固态传导冷却方式温控系统的可行方案,为未来空间太阳光泵浦激光器能够得到实际应用提供了研究资料。Abstract: The solar-pumped laser is a device that directly converts the sunlight into the laser. It has the advantages of less energy conversion, high efficiency, simple and reliable structure, stable performance and no pollution. An all-solid-state solar-pumped laser for the space environment (4 K) was modeled, and the thermal effect of the pumped solar collection phase was analyzed. The steady-state thermal analysis was carried out by using ANSYS Workbench@ thermal analysis software, considering two mounting bases and four solar deflection conditions. According to the feasibility verification of the first case, the suggestions for further improvement and optimization were put forward, and the actual model building and testing were preliminarily envisaged. In view of the second infeasible case, several possible improvement measures were put forward, and the future work was prospected. This study provides a new feasible scheme of temperature control system with all-solid-state conduction cooling for the practical application of solar pumped laser in space environment, and provides research data for the practical application of space solar pumped laser in the future.
-
表 1 激光器简化模型各部分材质及对应热导率
Table 1 Materials and corresponding thermal conductivity of each part of simplified laser model
结构 材质 各向同性热导率/
(W/(m·K))晶体棒 Nd:YAG 14(20 ℃);
10.5(100 ℃)锥形腔 YAG 14(20 ℃);
10.5(100 ℃)铜基座和模型后底座 铜 397 菲涅尔透镜 聚甲基丙烯酸甲酯
(PMMA)0.19 外壳 铝合金 151 表 2 太阳光光线追迹辐照度分布
Table 2 Solar ray tracing irradiance distribution
光源绕
X轴旋转上面 下面 侧左面 侧右面 后面 1面 2面 0° 1.2 1.1 1.1 1.3 6.8 5.4 130.9 1° 5.4 1.2 1.2 1.4 15.9 19.7 123.0 2° 5.7 6.7 1.2 1.4 33.8 52.7 80.2 3° 6.0 1.6 1.2 1.4 51.2 105.3 4.5 4° 6.1 1.6 1.2 1.4 73.8 70.0 1.5 5° 5.7 1.9 1.2 1.4 122.4 5.6 0.4 10° 5.4 10.0 1.2 1.5 134.4 0.2 0.1 15° 6.1 25.5 1.4 1.5 113.9 0.1 0 20° 6.1 51.3 1.9 2.4 77.0 0.1 0 25° 9.1 121.2 4.1 4.6 12.3 0.1 0 30° 10.6 112.6 6.4 6.3 8.2 0.1 0 35° 10.8 103.4 7.5 6.8 7.6 0.1 0 40° 10.4 95.3 7.6 7.1 3.9 0.1 0 50° 8.7 66.7 7.8 7.2 1.9 0 0 60° 6.0 42.6 6.3 5.4 0.7 0 0 70° 4.1 22.1 3.3 3.7 0.3 0 0 80° 1.0 7.8 0.8 1.4 0.1 0 0 90° 0 0 0 0 0 0 0 表 3 结果汇总
Table 3 Summary of results
光线偏
转角度简化后
受热情况最高温度(位置) 结论 0° 晶体棒及其锥形腔受热 440.66 K(晶体棒) 可行 3° 模型底座内表面及
铜基座前表面受热389.46 K(晶体棒) 可行 10° 菲涅尔透镜及模型
底座内表面受热353.88 K(菲涅尔透镜) 可行 25° 菲涅尔透镜及铝壳
下内表面受热435.97 K(铝壳) 可行 表 4 结果汇总
Table 4 Summary of results
光线偏转角度 简化后受热情况 结论 0° 菲涅尔透镜、晶体棒及其锥形腔受热 不可行 3° 菲涅尔透镜、模型底座内表面及铜基
座前表面受热不可行 10° 菲涅尔透镜及模型底座内表面受热 不可行 25° 菲涅尔透镜及铝壳下内表面受热 不可行 -
[1] 张海龙. 中国新能源发展研究[D]. 长春: 吉林大学, 2014.ZHANG Hailong. Research on the new energy development in China[D]. Changchun: Jilin University, 2014. [2] 朱俊生. 中国新能源和可再生能源发展状况[J]. 可再生能源,2003,21(2):3-8.ZHU Junsheng. Development situation of new & renew energy in China[J]. Renewable Energy,2003,21(2):3-8. [3] 郑立捷. 各国新能源汽车扶持政策一览[J]. 经济,2009(8):28-29.ZHENG Lijie. A list of support policies for new energy vehicles in various countries[J]. Economy,2009(8):28-29. [4] 杜炜, 杜成弢. 关于太阳能热利用技术发展趋势探究[J]. 能源与节能,2023(3):59-62.DU Wei, DU Chengtao. Development trend of solar heat utilization technology[J]. Energy and Conservation,2023(3):59-62. [5] 赵长明, 赵彬, 何建伟. 太阳光泵浦固体激光器及其空间应用[J]. 红外与激光工程,2006,35(增刊3):95-99.ZHAO Changming, ZHAO Bin, HE Jianwei. Solar pumped solid state lasers and its space applications[J]. Infrared and Laser Engineering,2006,35(S3):95-99. [6] VISTAS C R, LIANG D W, GARCIA D, et al. Ce: Nd: YAG continuous-wave solar-pumped laser[J]. Optik,2020,207:163795. doi: 10.1016/j.ijleo.2019.163795 [7] PAYZIYEV S, SHERNIYOZOV A, BAKHRAMOV S, et al. Luminescence sensitization properties of Ce: Nd: YAG materials for solar pumped lasers[J]. Optics Communications,2021,499:127283. doi: 10.1016/j.optcom.2021.127283 [8] CAI Z T, ZHAO C M, ZHANG H Y, et al. Investigation of dependence of solar-pumped laser power on laser medium length[J]. Journal of Photonics for Energy, 2022, 12(2): 026501. [9] CAI Z T, ZHAO C M, ZHAO Z Y, et al. Efficient 38.8 W/m2 solar pumped laser with a Ce: Nd: YAG crystal and a Fresnel lens[J]. Optics Express,2023,31(2):1340. doi: 10.1364/OE.481590 [10] CATELA M, LIANG D W, VISTAS C R, et al. Stable emission of solar laser power under non-continuous solar tracking conditions[J]. Applied Optics,2023,62(10):2697. doi: 10.1364/AO.485158 [11] 陶毓伽, 淮秀兰, 李志刚, 等. 大功率固体激光器冷却技术进展[J]. 激光杂志,2007,28(2):11-12.TAO Yujia, HUAI Xiulan, LI Zhigang, et al. Advancement of cooling techniques in high-power solid state laser[J]. Laser Journal,2007,28(2):11-12. [12] 邓传明, 于伟东. 太空环境中舱外航天服的外层防护问题[J]. 东华大学学报(自然科学版),2004,30(4):110-116.DENG Chuanming, YU Weidong. Issues on the out-layer protection of spacesuit in space environment[J]. Journal of Donghua University (Natural Science Edition),2004,30(4):110-116. [13] 陶毓伽. 大功率固体激光器冷却研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2010.TAO Yujia. Study on cooling of high power solid-state laser[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010. [14] NI N, ZHANG K Y, HU J P, et al. Combined use of blackbody and infrared radiation for accurate measurement of temperature field of aluminum alloys[J]. Optik,2022,268:169763. doi: 10.1016/j.ijleo.2022.169763 [15] 姚叙红, 朱林泉, 薛忠晋, 等. 菲涅尔透镜提高太阳能利用率的研究[J]. 红外,2009,30(3):30-34. doi: 10.3969/j.issn.1672-8785.2009.03.006YAO Xuhong, ZHU Linquan, XUE Zhongjin, et al. Research on Fresnel lens for improving utilization of solar energy[J]. Infrared,2009,30(3):30-34. doi: 10.3969/j.issn.1672-8785.2009.03.006 [16] 刘家兴, 刘高福, 陈德良. 菲涅尔公式讨论光波反射和折射时振幅的变化[J]. 物理通报,2021(7):23-26.LIU Jiaxing, LIU Gaofu, CHEN Deliang. Discussion on the change of amplitude of light wave in reflection and refraction using Fresnel’s formula[J]. Physics Bulletin,2021(7):23-26. [17] 王忠辉, 辛勇. 注射速度对高透光性PMMA制件光学性能的影响[J]. 工程塑料应用,2017,45(2):64-68.WANG Zhonghui, XIN Yong. Effect of injection velocity on optical properties of high transmittance PMMA injection molded parts[J]. Engineering Plastics Application,2017,45(2):64-68. [18] ASTM. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface: ASTM G173-03[S]. America: ASTM, 2020. [19] SAMUEL P, YANAGITANI T, YAGI H, et al. Efficient energy transfer between Ce3+ and Nd3+ in cerium codoped Nd: YAG laser quality transparent ceramics[J]. Journal of Alloys and Compounds,2010,507(2):475-478. doi: 10.1016/j.jallcom.2010.07.207 -