留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率金刚石拉曼激光器热效应数值模拟

张飞 郑浩 李鹏飞 陈晖 丁洁 齐瑶瑶 颜秉政 王雨雷 吕志伟 白振旭

张飞, 郑浩, 李鹏飞, 陈晖, 丁洁, 齐瑶瑶, 颜秉政, 王雨雷, 吕志伟, 白振旭. 高功率金刚石拉曼激光器热效应数值模拟[J]. 应用光学, 2023, 44(6): 1201-1211. doi: 10.5768/JAO202344.0610006
引用本文: 张飞, 郑浩, 李鹏飞, 陈晖, 丁洁, 齐瑶瑶, 颜秉政, 王雨雷, 吕志伟, 白振旭. 高功率金刚石拉曼激光器热效应数值模拟[J]. 应用光学, 2023, 44(6): 1201-1211. doi: 10.5768/JAO202344.0610006
ZHANG Fei, ZHENG Hao, LI Pengfei, CHEN Hui, DING Jie, QI Yaoyao, YAN Bingzheng, WANG Yulei, LYU Zhiwei, BAI Zhenxu. Numerical simulation of thermal effects in high-power diamond Raman lasers[J]. Journal of Applied Optics, 2023, 44(6): 1201-1211. doi: 10.5768/JAO202344.0610006
Citation: ZHANG Fei, ZHENG Hao, LI Pengfei, CHEN Hui, DING Jie, QI Yaoyao, YAN Bingzheng, WANG Yulei, LYU Zhiwei, BAI Zhenxu. Numerical simulation of thermal effects in high-power diamond Raman lasers[J]. Journal of Applied Optics, 2023, 44(6): 1201-1211. doi: 10.5768/JAO202344.0610006

高功率金刚石拉曼激光器热效应数值模拟

doi: 10.5768/JAO202344.0610006
基金项目: 国家自然科学基金(61927815);天津市自然科学基金(22JCYBJC01100);河北省自然科学基金(F2023202063);量子光学与光量子器件国家重点实验室开放课题(KF202201);河北工业大学基本科研业务费(JBKYTD2201)
详细信息
    作者简介:

    张飞(1994—),男,博士研究生,主要从事高功率金刚石拉曼激光器研究。E-mail:1607794625@qq.com

    通讯作者:

    白振旭(1987—),男,博士,教授,主要从事高功率激光技术与新型激光器研究。E-mail:baizhenxu@hotmail.com

  • 中图分类号: TN248

Numerical simulation of thermal effects in high-power diamond Raman lasers

  • 摘要: 金刚石晶体不仅具有极佳的光学性质,同时也拥有极高的热导率和低的热膨胀系数,这使得金刚石激光器成为实现不受热影响高功率激光输出的重要路径。但随着激光功率的进一步提升,金刚石拉曼激光器中仍然存在不可忽视的热效应等问题,这对金刚石激光器性能提升提出了挑战。针对高功率运转情况下金刚石拉曼激光器的热效应进行了理论研究,根据热传导方程并采用有限元分析方法,模拟了金刚石温度、热应力以及热形变分布,分析了泵浦参数、晶体参数对金刚石温度、热应力、热形变的影响。此外,基于石墨片横向导热特性,设计了一种新型的用于金刚石晶体的热沉结构。与传统单一铜片散热方式相比,在泵浦功率800 W、束腰半径40 μm条件下,金刚石中心温度下降了10.16 K,下表面平均应力降低了19.857 MPa,端面平均形变量减小了0.055 μm。数值模拟结果表明,该方法对缓解金刚石激光的热效应,实现金刚石拉曼激光器输出功率的进一步提升和高光束质量激光输出具有重要指导意义。
  • 图  1  金刚石拉曼激光器模型

    Fig.  1  Diamond Raman laser model

    图  2  金刚石温度分布

    Fig.  2  Diamond temperature distribution

    图  3  泵浦参数对温度的影响

    Fig.  3  Effect of pump parameters on temperature

    图  4  金刚石尺寸对温度的影响

    Fig.  4  Effect of diamond size on temperature

    图  5  金刚石应力分布

    Fig.  5  Diamond stress distribution

    图  6  泵浦参数对应力的影响

    Fig.  6  Effect of pump parameters on stress

    图  7  金刚石尺寸对应力的影响

    Fig.  7  Effect of diamond size on stress

    图  8  金刚石形变分布

    Fig.  8  Deformation distribution of diamond

    图  9  泵浦参数对形变的影响

    Fig.  9  Effect of pump parameters on deformation

    图  10  金刚石尺寸对形变的影响

    Fig.  10  Effect of diamond size on deformation

    图  11  热沉结构对金刚石温度、应力以及形变的影响

    Fig.  11  Effect of heat sink structure on temperature, stress and deformation of diamond

    表  1  金刚石热模拟中的相关参数[40]

    Table  1  Parameters used in diamond thermal simulation[40]

    参数
    金刚石热导率/(W·m−1·K−1)2200
    热膨胀系数/K1.1×10−6
    密度/(g·cm−3)3.515
    比热容/(J·g−1·K−1)520
    杨氏模量/GPa1050
    泊松比0.069
    尺寸/mm7×1×1
    折射率2.38
    热导率/(W·m−1·K−1)385
    尺寸/mm9×4×1
    石墨片热导率/(W·m−1·K−1)2 000、35
    尺寸/mm7×1×0.5
    金刚石拉曼激光器泵浦功率/W800
    输出功率/W320
    剩余泵浦功率/W80
    光束质量因子1.3
    泵浦波长/nm1064
    泵浦束腰半径/µm40
    温度/K295.15
    环境空气对流换热系数/(W·m−2·K−1)10
    下载: 导出CSV
  • [1] JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photonics,2013,7(11):861-867. doi: 10.1038/nphoton.2013.273
    [2] 丁宇, 姜锋, 郑荣山, 等. 美国高能激光武器发展概况(特邀)[J]. 光电技术应用,2021,36(6):1-9.

    DING Yu, JIANG Feng, ZHENG Rongshan, et al. Overview of high energy laser weapon development in USA (invited)[J]. Electro-Optic Technology Application,2021,36(6):1-9.
    [3] 朱孟真, 陈霞, 刘旭, 等. 战术激光武器反无人机发展现状和关键技术分析[J]. 红外与激光工程,2021,50(7):20200230.

    ZHU Mengzhen, CHEN Xia, LIU Xu, et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering,2021,50(7):20200230.
    [4] 周朴, 姚天甫, 范晨晨, 等. 拉曼光纤激光: 50年的历程、现状与趋势(特邀)[J]. 红外与激光工程,2022,51(1):20220015.

    ZHOU Pu, YAO Tianfu, FAN Chenchen, et al. 50th anniversary of Raman fiber laser: history, progress and prospect (invited)[J]. Infrared and Laser Engineering,2022,51(1):20220015.
    [5] SUPRADEEPA V R, FENG Y, NICHOLSON J W. Raman fiber lasers[J]. Journal of Optics,2017,19(2):023001. doi: 10.1088/2040-8986/19/2/023001
    [6] HUO X W, QI Y Y, ZHANG Y, et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and Lasers in Engineering,2020,134:106207. doi: 10.1016/j.optlaseng.2020.106207
    [7] 白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程,2021,50(1):20200098.

    BAI Zhenxu, CHEN Hui, LI Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering,2021,50(1):20200098.
    [8] 张亚凯, 陈晖, 白振旭, 等. 多波长红光金刚石拉曼激光器[J]. 红外与激光工程,2023,52(8):20230329.

    ZHANG Yakai, CHEN Hui, BAI Zhenxu, et al. Multi-wavelength red diamond Raman laser[J]. Infrared and Laser Engineering,2023,52(8):20230329.
    [9] 白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程,2020,49(12):20201076. doi: 10.3788/irla.35_2020-12by

    BAI Zhenxu, YANG Xuezong, CHEN Hui, et al. Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering,2020,49(12):20201076. doi: 10.3788/irla.35_2020-12by
    [10] WILLIAMS R J, KITZLER O, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2018,24(5):1602214.
    [11] JASBEER H, WILLIAMS R J, KITZLER O, et al. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation[J]. Optics Express,2018,26(2):1930-1941. doi: 10.1364/OE.26.001930
    [12] SARANG S, RICHARDSON M. Power scaling of CW crystalline OPOs and Raman lasers[J]. Photonics,2021,8(12):565-571. doi: 10.3390/photonics8120565
    [13] 白振旭, 陈晖, 张展鹏, 等. 百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀)[J]. 红外与激光工程,2021,50(12):20210685.

    BAI Zhenxu, CHEN Hui, ZHANG Zhanpeng, et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (invited)[J]. Infrared and Laser Engineering,2021,50(12):20210685.
    [14] ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam[J]. Optics Letters,2019,44(10):2506-2509. doi: 10.1364/OL.44.002506
    [15] BAI Z X, WILLIAMS R J, KITZLER O, et al. 302 W quasi-continuous cascaded diamond Raman laser at 15 microns with large brightness enhancement[J]. Optics Express,2018,26(16):19797-19803. doi: 10.1364/OE.26.019797
    [16] YANG X Z, KITZLER O, SPENCE D J, et al. Diamond sodium guide star laser[J]. Optics Letters,2020,45(7):1898-1901. doi: 10.1364/OL.387879
    [17] BAI Z X, WILLIAMS R J, JASBEER H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters,2018,43(3):563-566. doi: 10.1364/OL.43.000563
    [18] 白振旭, 陈晖, 丁洁, 等. 基于空间光腔的高功率布里渊频率梳[J]. 中国激光,2022,49(4):0415001.

    BAI Zhenxu, CHEN Hui, DING Jie, et al. High-power Brillouin frequency comb based on free-space optical cavity[J]. Chinese Journal of Lasers,2022,49(4):0415001.
    [19] CHEN H, BAI Z X, CAI Y P, et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion[J]. Applied Physics Letters,2023,122(9):092202. doi: 10.1063/5.0137542
    [20] WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews,2015,9(4):405-411.
    [21] PASHININ V P, RALCHENKO V G, BOLSHAKOV A P, et al. External-cavity diamond Raman laser performance at 1 240 nm and 1 485 nm wavelengths with high pulse energy[J]. Laser Physics Letters,2016,13(6):065001. doi: 10.1088/1612-2011/13/6/065001
    [22] ANTIPOV S, WILLIAMS R J, SABELLA A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express,2020,28(10):15232-15239. doi: 10.1364/OE.388794
    [23] MILDREN R, RABEAU J. Optical engineering of diamond[M]. Germany: John Wiley & Sons, 2013:353-384 .
    [24] MCKAY A, LIU H, KITZLER O, et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1 240 nm) and second (1 485 nm) Stokes output[J]. Laser Physics Letters,2013,10(10):105801. doi: 10.1088/1612-2011/10/10/105801
    [25] LI Y L, DING J, BAI Z X, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering,2021,9:e35. doi: 10.1017/hpl.2021.25
    [26] BAI Z X, ZHANG Z P, WANG K, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials,2021,11(6):1572-1579. doi: 10.3390/nano11061572
    [27] GONG Q X, ZHANG M X, LIN C N, et al. Analysis of thermal effects in kilowatt high power diamond Raman lasers[J]. Crystals,2022,12(12):1824. doi: 10.3390/cryst12121824
    [28] FROMZEL V, TER-GABRIELYAN N, DUBINSKII M. Efficient resonantly-clad-pumped laser based on a Er: YAG-core planar waveguide[J]. Optics Express,2018,26(4):3932-3937. doi: 10.1364/OE.26.003932
    [29] LIU J, WU J D, CHEN H L, et al. Short-pulsed Raman fiber laser and its dynamics[J]. Science China Physics, Mechanics & Astronomy,2020,64(1):1-21.
    [30] YU W L, YAN P, XIAO Q R, et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics,2021,60(7):2046-2055. doi: 10.1364/AO.416515
    [31] WANG Q C, LONG Q L, GAO Y A, et al. High-efficiency Ho:YLF slab laser with 125 W continuous-wave output power[J]. Applied Optics,2021,60(26):8046-8049. doi: 10.1364/AO.434708
    [32] MI S, LI J, WEI D, et al. 105 W continuous-wave diode-pumped Tm:YAP slab laser with high beam quality[J]. Optics & Laser Technology,2021,138:106847.
    [33] NAGEL S, METZGER B, BAUER D, et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters,2021,46(5):965-968. doi: 10.1364/OL.416432
    [34] AHMED M A, BEIROW F, LOESCHER A, et al. High-power thin-disk lasers emitting beams with axially symmetric polarizations[J]. Nanophotonics,2022,11(4):835-846. doi: 10.1515/nanoph-2021-0606
    [35] TU H, MA S H, HU Z G, et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm[J]. Optical Materials,2021,114:110912. doi: 10.1016/j.optmat.2021.110912
    [36] YAO Q Q, DONG Y, WANG Q, et al. Beam quality improvement by controlling thermal lens spherical aberration in an end-pumped Nd:YVO4 laser[J]. Applied Optics,2018,57(9):2245-2249. doi: 10.1364/AO.57.002245
    [37] RAMESH K N, SHARMA T K, RAO G A P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review[J]. Archives of Computational Methods in Engineering,2021,28(4):3135-3165. doi: 10.1007/s11831-020-09495-1
    [38] KIM K J, HAN B, BAR-COHEN A. Thermal and optical performance of cryogenically cooled laser diode bars mounted on pin-finned microcoolers[J]. Applied Physics B,2021,127:1-9.
    [39] FANG J Y, ZHANG H, ZOU Y G, et al. Thermal management of a semiconductor laser array based on a graphite heat sink[J]. Applied Optics,2019,58(28):7708-7715. doi: 10.1364/AO.58.007708
    [40] DING J, LI Y L, CHEN H, et al. Thermal modeling of an external cavity diamond Raman laser[J]. Optics & Laser Technology,2022,156:108578.
    [41] ZHANG H, WEN Y, ZHANG L, et al. Influences of pump spot radius and depth of focus on the thermal effect of Tm:YAP crystal[J]. Current Optics and Photonics,2019,3(5):458-465.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  26
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-11-22

目录

    /

    返回文章
    返回