Effect of doping phase on laser ablation resistance of ZrB2 ceramic coatings
-
摘要: 耐高温陶瓷作为高熔点材料,具有优异的高温抗烧蚀性能,有可能满足未来抗激光防护的需求。为摸清ZrB2陶瓷涂层抗激光防护性能,采用高功率固体激光器作为测试光源,搭建了激光烧蚀实验平台和激光耦合特性测量系统,重点对ZrB2陶瓷涂层开展了激光烧蚀实验和涂层反射率测试。实验研究了不同激光参数条件下ZrB2涂层抗激光烧蚀性能,以及掺杂相(SiC、MoSi2)的影响。结果表明,相比于未掺杂ZrB2涂层,掺杂后ZrB2涂层抗激光烧蚀能力明显下降。分析认为掺杂相可提高ZrB2涂层抗氧化性能,但不利于发挥氧化生成物ZrO2的高反射和隔热作用,致使抗激光损伤阈值降低。激光损伤前后涂层反射率的测试结果,也证实了ZrO2的高反射率是增强ZrB2涂层抗激光损伤阈值的关键。同时,利用有限元软件建立了连续激光烧蚀下ZrB2陶瓷涂层温度计算模型,并以基底发生熔化为判据,仿真得到了陶瓷涂层典型的抗激光烧蚀阈值参数。Abstract: High temperature resistant ceramics, as high melting point materials, have excellent high-temperature ablation resistance and may meet the needs of future laser protection. In order to understand the laser protection performance of ZrB2 ceramic coating, a high-power solid-state laser was used as the test light source, and a laser ablation experimental platform as well as laser coupling characteristic measurement system were established. The focus was on conducting laser ablation experiments and coating reflectivity tests on ZrB2 ceramic coating. The laser ablation resistance of ZrB2 coatings under different laser parameter conditions, and the influences of doped phases (SiC, MoSi2) were studied by experiment. The results show that compared to the undoped ZrB2 coating, the doped ZrB2 coating shows a significant decrease in laser ablation resistance. The conclusion analysis suggests that the doped phase can improve the oxidation resistance of ZrB2 coating, but it is not conducive to the high reflection and insulation effects of the oxidation product ZrO2, resulting in a decrease in the threshold of laser damage resistance. The reflectivity test results of the coating before and after laser damage also confirms that the high reflectivity of ZrO2 is the key to enhancing the laser damage resistance threshold of ZrB2 coating. Meanwhile, a temperature calculation model for ZrB2 ceramic coating under continuous laser ablation was established by using finite element software, and the typical laser ablation threshold parameters of ceramic coatings were simulated based on the criterion of substrate melting.
-
Key words:
- ceramic coating /
- ZrB2 /
- doped phase /
- laser ablation /
- reflectance /
- temperature
-
表 1 激光损伤前后涂层反射率(@1070 nm)
Table 1 Coatings reflectance before and after laser damage (@1 070 nm)
Coatings Reflectance Before After ZrB2 0.236 0.677(white area) 0.292(melting area) ZrB2-SiC 0.098 0.545(white area) 0.243(melting area) ZrB2-MoSi2 0.171 0.072(black area) 表 2 材料热物性参数
Table 2 Thermal physical parameters of material
Material ρ/(kg·m−3) C/(J·kg−1·K−1) k/(W·m−1·K−1) ZrB2 6090 760 83 ZrO2 4780 457 1.7 Titanium alloy 4500 703 11.8 表 3 陶瓷涂层激光损伤阈值仿真结果
Table 3 Simulation results of laser damage threshold for ceramic coatings
Sample Irradiation
duration/sExperimental
result/(W·cm−2)Simulation
result/(W·cm−2)ZrB2 5 − ~1340 10 ~1222 ~1200 20 ~1162 ~1150 ZrB2-SiC 5 − ~1300 10 ~1147 ~1100 20 ~939 ~900 ZrB2-MoSi2 5 − ~1150 10 ~939 ~930 20 ~745 ~700 -
[1] 付前刚, 张佳平, 李贺军. 抗烧蚀C/C复合材料研究进展[J]. 新型炭材料,2015,30(2):97-105. doi: 10.19869/j.ncm.1007-8827.2015.02.001FU Qiangang, ZHANG Jiaping, LI Hejun. Advances in the ablation resistance of C/C composites[J]. New Carbon Materials,2015,30(2):97-105. doi: 10.19869/j.ncm.1007-8827.2015.02.001 [2] 王俊山, 徐林, 李炜, 等. 航天领域C/C复合材料研究进展[J]. 宇航材料工艺,2022,52(2):1-12.WANG Junshan, XU Lin, LI Wei, et al. Research progress on C/C composites for aerospace applications[J]. Aerospace Materials & Technology,2022,52(2):1-12. [3] 王伟志, 马国政, 韩珩, 等. 激光熔覆陶瓷涂层研究现状与展望[J]. 机械工程学报,2023,59(7):92-109.WANG Weizhi, MA Guozheng, HAN Heng, et al. Research status and prospect of laser cladding ceramic coatings[J]. Journal of Mechanical Engineering,2023,59(7):92-109. [4] 何江怡. ZrB2及其复合陶瓷的高温抗氧化性能[J]. 宇航材料工艺,2015,45(3):1-6.HE Jiangyi. High temperature oxidation resistance of ZrB2 and its composites[J]. Aerospace Materials & Technology,2015,45(3):1-6. [5] 刘雨蒙, 郝建洁, 李佳艳, 等. C/C复合材料表面ZrB2基陶瓷涂层改性及抗氧化性能研究[J]. 热喷涂技术,2021,13(1):22-32. doi: 10.3969/j.issn.1674-7127.2021.01.003LIU Yumeng, HAO Jianjie, LI Jiayan, et al. Study on modification and anti-oxidation performance of ZrB2 based ceramic coating on C/C composites[J]. Thermal Spray Technology,2021,13(1):22-32. doi: 10.3969/j.issn.1674-7127.2021.01.003 [6] 刘晓燕, 魏春城, 吴炳辉. ZrB2基超高温陶瓷抗氧化性研究进展[J]. 陶瓷学报,2016,37(2):115-119.LIU Xiaoyan, WEI Chuncheng, WU Binghui. Research progress on antioxidant activity of ZrB2 based ultra high temperature ceramics[J]. Journal of Ceramics,2016,37(2):115-119. [7] 刘子京, 樊坤阳, 黄淙, 等. C/C复合材料ZrB2基超高温陶瓷涂层的研究进展[J]. 材料科学与工艺,2022,30(5):69-81. doi: 10.11951/j.issn.1005-0299.20220015LIU Zijing, FAN Kunyang, HUANG Cong, et al. Research progress of ZrB2 based ultra-high-temperature ceramic coatings on C/C composites[J]. Materials Science and Technology,2022,30(5):69-81. doi: 10.11951/j.issn.1005-0299.20220015 [8] 毛金元, 刘敏, 毛杰, 等. 等离子喷涂制备ZrB2-MoSi2复合涂层及其抗氧化性能[J]. 无机材料学报,2015,30(3):282-286. doi: 10.15541/jim20140389MAO Jinyuan, LIU Min, MAO Jie, et al. Oxidation-resistance of ZrB2-MoSi2 composite coatings prepared by atmos-pheric plasma spraying[J]. Journal of Inorganic Materials,2015,30(3):282-286. doi: 10.15541/jim20140389 [9] 柳彦博. 等离子喷涂ZrB2/SiC涂层微结构控制与抗烧蚀性能表征[D]. 北京: 北京理工大学, 2015.LIU Yanbo. Microstructure control and ablation resistance characterization of plasma sprayed ZrB2/SiC coating[D]. Beijing: Beijing Institute of Technology, 2015. [10] 周海军, 张翔宇, 高乐, 等. ZrB2-SiC超高温陶瓷涂层的抗烧蚀性能研究[J]. 无机材料学报,2013,28(3):256-260. doi: 10.3724/SP.J.1077.2013.12208ZHOU Haijun, ZHANG Xiangyu, GAO Le, et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings[J]. Journal of Inorganic Materials,2013,28(3):256-260. doi: 10.3724/SP.J.1077.2013.12208 [11] 王佳文, 刘敏, 邓春明, 等. 等离子喷涂制备ZrB2-SiC涂层及其抗氧-丙烷焰流烧蚀性能[J]. 中国表面工程,2016,29(4):103-110.WANG Jiawen, LIU Min, DENG Chunming, et al. Ablation-resistance of ZrB2-SiC coating under oxygen-propane torch flame prepared by atmospheric plasma spraying[J]. China Surface Engineering,2016,29(4):103-110. [12] 文波, 马康智, 倪立勇, 等. 低压等离子喷涂ZrB2-SiC复合涂层烧蚀机理研究[J]. 热喷涂技术,2016,8(3):30-35.WEN Bo, MA Kangzhi, NI Liyong, et al. The research on ablation mechanism of ZrB2-SiC coating prepared by low pressure plasma spraying (LPPS)[J]. Thermal Spray Technology,2016,8(3):30-35. [13] 严振宇. ZrB2基复合材料在强激光作用下的烧蚀机理研究[D]. 北京: 北京理工大学, 2014.YAN Zhenyu. Study on ablation mechanism of ZrB2 based composites under intense laser[D]. Beijing: Beijing Institute of Technology, 2014. [14] 徐强, 邵正山, 朱时珍, 等. ZrB2-ZrC超高温陶瓷激光烧蚀行为研究[J]. 稀有金属材料与工程,2015,44(增刊1):533-536.XU Qiang, SHAO Zhengshan, ZHU Shizhen, et al. Laser ablation behavior of ZrB2-ZrC ultra high temperature ceramics[J]. Rare Metal Materials and Engineering,2015,44(S1):533-536. [15] 张天宇, 孔斌, 陈敏孙, 等. 陶瓷涂层加固铝合金薄板的抗激光性能测试[J]. 红外与激光工程,2017,46(6):0606002. doi: 10.3788/IRLA201746.0606002ZHANG Tianyu, KONG Bin, CHEN Minsun, et al. Anti-laser performance test of aluminum alloy plates reinforced by ceramic coating[J]. Infrared and Laser Engineering,2017,46(6):0606002. doi: 10.3788/IRLA201746.0606002 [16] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术,2023,47(1):52-58. doi: 10.7510/jgjs.issn.1001-3806.2023.01.008LI Leichang, WEI Xin. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology,2023,47(1):52-58. doi: 10.7510/jgjs.issn.1001-3806.2023.01.008 [17] 朱洁旻, 赵懿, 杨振, 等. 陶瓷抗激光涂层对钛合金焊缝及凹槽区域的防护效果研究[J]. 西北工业大学学报,2021,39(6):1281-1288. doi: 10.3969/j.issn.1000-2758.2021.06.014ZHU Jiemin, ZHAO Yi, YANG Zhen, et al. The damage effect of weld seam and groove area of titanium alloy with ceramic laser resistant coating[J]. Journal of Northwestern Polytechnical University,2021,39(6):1281-1288. doi: 10.3969/j.issn.1000-2758.2021.06.014 -