留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂相对ZrB2陶瓷涂层抗激光烧蚀性能的影响

贺敏波 任伟艳 杨雨川 邬志华 胡月宏

贺敏波, 任伟艳, 杨雨川, 邬志华, 胡月宏. 掺杂相对ZrB2陶瓷涂层抗激光烧蚀性能的影响[J]. 应用光学, 2023, 44(6): 1177-1184. doi: 10.5768/JAO202344.0610003
引用本文: 贺敏波, 任伟艳, 杨雨川, 邬志华, 胡月宏. 掺杂相对ZrB2陶瓷涂层抗激光烧蚀性能的影响[J]. 应用光学, 2023, 44(6): 1177-1184. doi: 10.5768/JAO202344.0610003
HE Minbo, REN Weiyan, YANG Yuchuan, WU Zhihua, HU Yuehong. Effect of doping phase on laser ablation resistance of ZrB2 ceramic coatings[J]. Journal of Applied Optics, 2023, 44(6): 1177-1184. doi: 10.5768/JAO202344.0610003
Citation: HE Minbo, REN Weiyan, YANG Yuchuan, WU Zhihua, HU Yuehong. Effect of doping phase on laser ablation resistance of ZrB2 ceramic coatings[J]. Journal of Applied Optics, 2023, 44(6): 1177-1184. doi: 10.5768/JAO202344.0610003

掺杂相对ZrB2陶瓷涂层抗激光烧蚀性能的影响

doi: 10.5768/JAO202344.0610003
基金项目: 十三五毁伤专项(2019JHHS2)
详细信息
    作者简介:

    贺敏波(1986—),男,硕士,高级工程师,主要从事激光辐照效应与机理研究。E-mail:hmb@stu.xjtu.edu.cn

  • 中图分类号: TN249

Effect of doping phase on laser ablation resistance of ZrB2 ceramic coatings

  • 摘要: 耐高温陶瓷作为高熔点材料,具有优异的高温抗烧蚀性能,有可能满足未来抗激光防护的需求。为摸清ZrB2陶瓷涂层抗激光防护性能,采用高功率固体激光器作为测试光源,搭建了激光烧蚀实验平台和激光耦合特性测量系统,重点对ZrB2陶瓷涂层开展了激光烧蚀实验和涂层反射率测试。实验研究了不同激光参数条件下ZrB2涂层抗激光烧蚀性能,以及掺杂相(SiC、MoSi2)的影响。结果表明,相比于未掺杂ZrB2涂层,掺杂后ZrB2涂层抗激光烧蚀能力明显下降。分析认为掺杂相可提高ZrB2涂层抗氧化性能,但不利于发挥氧化生成物ZrO2的高反射和隔热作用,致使抗激光损伤阈值降低。激光损伤前后涂层反射率的测试结果,也证实了ZrO2的高反射率是增强ZrB2涂层抗激光损伤阈值的关键。同时,利用有限元软件建立了连续激光烧蚀下ZrB2陶瓷涂层温度计算模型,并以基底发生熔化为判据,仿真得到了陶瓷涂层典型的抗激光烧蚀阈值参数。
  • 图  1  实验光路示意图

    Fig.  1  Schematic diagram of experimental system

    图  2  靶面处激光光斑分布

    Fig.  2  Laser spot distribution at target surface

    图  3  反射率测量系统光路

    Fig.  3  System optical path of reflectivity measurement

    图  4  ZrB2涂层典型损伤形貌与激光参数

    Fig.  4  Damage morphologies of ZrB2 coating with typical laser parameters

    图  5  ZrB2涂层典型损伤区域SEM形貌

    Fig.  5  SEM morphology of ZrB2 coating after laser irradiation

    图  6  ZrB2-SiC涂层典型损伤形貌与激光参数

    Fig.  6  Damage morphologies of ZrB2-SiC coating with typical laser parameters

    图  7  ZrB2-MoSi2涂层典型损伤形貌与激光参数

    Fig.  7  Damage morphologies of ZrB2-MoSi2 coating with typical laser parameters

    图  8  ZrB2-SiC涂层典型损伤区域SEM形貌

    Fig.  8  SEM morphology of ZrB2-SiC coating after laser irradiation

    图  9  ZrB2-MoSi2涂层典型损伤区域SEM形貌

    Fig.  9  SEM morphology of ZrB2-MoSi2 coating after laser irradiation

    图  10  ZrB2涂层温度结果比较

    Fig.  10  Temperature results comparison of ZrB2 coating

    表  1  激光损伤前后涂层反射率(@1070 nm)

    Table  1  Coatings reflectance before and after laser damage (@1 070 nm)

    CoatingsReflectance
    BeforeAfter
    ZrB20.2360.677(white area)
    0.292(melting area)
    ZrB2-SiC0.0980.545(white area)
    0.243(melting area)
    ZrB2-MoSi20.1710.072(black area)
    下载: 导出CSV

    表  2  材料热物性参数

    Table  2  Thermal physical parameters of material

    Materialρ/(kg·m−3)C/(J·kg−1·K−1)k/(W·m−1·K−1)
    ZrB2609076083
    ZrO247804571.7
    Titanium alloy450070311.8
    下载: 导出CSV

    表  3  陶瓷涂层激光损伤阈值仿真结果

    Table  3  Simulation results of laser damage threshold for ceramic coatings

    SampleIrradiation
    duration/s
    Experimental
    result/(W·cm−2)
    Simulation
    result/(W·cm−2)
    ZrB25~1340
    10~1222~1200
    20~1162~1150
    ZrB2-SiC5~1300
    10~1147~1100
    20~939~900
    ZrB2-MoSi25~1150
    10~939~930
    20~745~700
    下载: 导出CSV
  • [1] 付前刚, 张佳平, 李贺军. 抗烧蚀C/C复合材料研究进展[J]. 新型炭材料,2015,30(2):97-105. doi: 10.19869/j.ncm.1007-8827.2015.02.001

    FU Qiangang, ZHANG Jiaping, LI Hejun. Advances in the ablation resistance of C/C composites[J]. New Carbon Materials,2015,30(2):97-105. doi: 10.19869/j.ncm.1007-8827.2015.02.001
    [2] 王俊山, 徐林, 李炜, 等. 航天领域C/C复合材料研究进展[J]. 宇航材料工艺,2022,52(2):1-12.

    WANG Junshan, XU Lin, LI Wei, et al. Research progress on C/C composites for aerospace applications[J]. Aerospace Materials & Technology,2022,52(2):1-12.
    [3] 王伟志, 马国政, 韩珩, 等. 激光熔覆陶瓷涂层研究现状与展望[J]. 机械工程学报,2023,59(7):92-109.

    WANG Weizhi, MA Guozheng, HAN Heng, et al. Research status and prospect of laser cladding ceramic coatings[J]. Journal of Mechanical Engineering,2023,59(7):92-109.
    [4] 何江怡. ZrB2及其复合陶瓷的高温抗氧化性能[J]. 宇航材料工艺,2015,45(3):1-6.

    HE Jiangyi. High temperature oxidation resistance of ZrB2 and its composites[J]. Aerospace Materials & Technology,2015,45(3):1-6.
    [5] 刘雨蒙, 郝建洁, 李佳艳, 等. C/C复合材料表面ZrB2基陶瓷涂层改性及抗氧化性能研究[J]. 热喷涂技术,2021,13(1):22-32. doi: 10.3969/j.issn.1674-7127.2021.01.003

    LIU Yumeng, HAO Jianjie, LI Jiayan, et al. Study on modification and anti-oxidation performance of ZrB2 based ceramic coating on C/C composites[J]. Thermal Spray Technology,2021,13(1):22-32. doi: 10.3969/j.issn.1674-7127.2021.01.003
    [6] 刘晓燕, 魏春城, 吴炳辉. ZrB2基超高温陶瓷抗氧化性研究进展[J]. 陶瓷学报,2016,37(2):115-119.

    LIU Xiaoyan, WEI Chuncheng, WU Binghui. Research progress on antioxidant activity of ZrB2 based ultra high temperature ceramics[J]. Journal of Ceramics,2016,37(2):115-119.
    [7] 刘子京, 樊坤阳, 黄淙, 等. C/C复合材料ZrB2基超高温陶瓷涂层的研究进展[J]. 材料科学与工艺,2022,30(5):69-81. doi: 10.11951/j.issn.1005-0299.20220015

    LIU Zijing, FAN Kunyang, HUANG Cong, et al. Research progress of ZrB2 based ultra-high-temperature ceramic coatings on C/C composites[J]. Materials Science and Technology,2022,30(5):69-81. doi: 10.11951/j.issn.1005-0299.20220015
    [8] 毛金元, 刘敏, 毛杰, 等. 等离子喷涂制备ZrB2-MoSi2复合涂层及其抗氧化性能[J]. 无机材料学报,2015,30(3):282-286. doi: 10.15541/jim20140389

    MAO Jinyuan, LIU Min, MAO Jie, et al. Oxidation-resistance of ZrB2-MoSi2 composite coatings prepared by atmos-pheric plasma spraying[J]. Journal of Inorganic Materials,2015,30(3):282-286. doi: 10.15541/jim20140389
    [9] 柳彦博. 等离子喷涂ZrB2/SiC涂层微结构控制与抗烧蚀性能表征[D]. 北京: 北京理工大学, 2015.

    LIU Yanbo. Microstructure control and ablation resistance characterization of plasma sprayed ZrB2/SiC coating[D]. Beijing: Beijing Institute of Technology, 2015.
    [10] 周海军, 张翔宇, 高乐, 等. ZrB2-SiC超高温陶瓷涂层的抗烧蚀性能研究[J]. 无机材料学报,2013,28(3):256-260. doi: 10.3724/SP.J.1077.2013.12208

    ZHOU Haijun, ZHANG Xiangyu, GAO Le, et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings[J]. Journal of Inorganic Materials,2013,28(3):256-260. doi: 10.3724/SP.J.1077.2013.12208
    [11] 王佳文, 刘敏, 邓春明, 等. 等离子喷涂制备ZrB2-SiC涂层及其抗氧-丙烷焰流烧蚀性能[J]. 中国表面工程,2016,29(4):103-110.

    WANG Jiawen, LIU Min, DENG Chunming, et al. Ablation-resistance of ZrB2-SiC coating under oxygen-propane torch flame prepared by atmospheric plasma spraying[J]. China Surface Engineering,2016,29(4):103-110.
    [12] 文波, 马康智, 倪立勇, 等. 低压等离子喷涂ZrB2-SiC复合涂层烧蚀机理研究[J]. 热喷涂技术,2016,8(3):30-35.

    WEN Bo, MA Kangzhi, NI Liyong, et al. The research on ablation mechanism of ZrB2-SiC coating prepared by low pressure plasma spraying (LPPS)[J]. Thermal Spray Technology,2016,8(3):30-35.
    [13] 严振宇. ZrB2基复合材料在强激光作用下的烧蚀机理研究[D]. 北京: 北京理工大学, 2014.

    YAN Zhenyu. Study on ablation mechanism of ZrB2 based composites under intense laser[D]. Beijing: Beijing Institute of Technology, 2014.
    [14] 徐强, 邵正山, 朱时珍, 等. ZrB2-ZrC超高温陶瓷激光烧蚀行为研究[J]. 稀有金属材料与工程,2015,44(增刊1):533-536.

    XU Qiang, SHAO Zhengshan, ZHU Shizhen, et al. Laser ablation behavior of ZrB2-ZrC ultra high temperature ceramics[J]. Rare Metal Materials and Engineering,2015,44(S1):533-536.
    [15] 张天宇, 孔斌, 陈敏孙, 等. 陶瓷涂层加固铝合金薄板的抗激光性能测试[J]. 红外与激光工程,2017,46(6):0606002. doi: 10.3788/IRLA201746.0606002

    ZHANG Tianyu, KONG Bin, CHEN Minsun, et al. Anti-laser performance test of aluminum alloy plates reinforced by ceramic coating[J]. Infrared and Laser Engineering,2017,46(6):0606002. doi: 10.3788/IRLA201746.0606002
    [16] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术,2023,47(1):52-58. doi: 10.7510/jgjs.issn.1001-3806.2023.01.008

    LI Leichang, WEI Xin. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology,2023,47(1):52-58. doi: 10.7510/jgjs.issn.1001-3806.2023.01.008
    [17] 朱洁旻, 赵懿, 杨振, 等. 陶瓷抗激光涂层对钛合金焊缝及凹槽区域的防护效果研究[J]. 西北工业大学学报,2021,39(6):1281-1288. doi: 10.3969/j.issn.1000-2758.2021.06.014

    ZHU Jiemin, ZHAO Yi, YANG Zhen, et al. The damage effect of weld seam and groove area of titanium alloy with ceramic laser resistant coating[J]. Journal of Northwestern Polytechnical University,2021,39(6):1281-1288. doi: 10.3969/j.issn.1000-2758.2021.06.014
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  21
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 修回日期:  2023-09-09
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-11-22

目录

    /

    返回文章
    返回