Principle and research progress of four-quadrant detector spot detection
-
摘要: 光斑检测技术在现代科学研究与应用中扮演着重要角色,四象限探测器由于其具有探测灵敏度高、信号处理简单和抗干扰能力强等优点,在光斑检测技术中得到了广泛的应用,是捕获、跟踪和瞄准系统中的关键器件。首先介绍了光斑检测中常用的光斑模型和四象限探测器检测光斑原理,然后分析了国内外在四象限探测器检测光斑方面的研究成果,以及影响四象限探测器检测光斑精度的因素和常用的光斑检测算法,同时介绍了四象限探测器的光斑检测系统,包括光束对准检测系统、四象限探测器跟踪通信复合系统和微纳激光通信系统。最后,展望了光斑检测技术的发展前景。Abstract: Spot detection technology plays an important role in modern scientific research and application. Due to its advantages of high detection sensitivity, simple signal processing, and strong anti-interference ability, four-quadrant detectors have been widely used in spot detection technology and are the key components in acquisition, tracking, and pointing systems. Firstly, the spot models commonly used in spot detection and the principle of four-quadrant detector spot detection were introduced. Then, the research results of four-quadrant detector spot detection at home and abroad, as well as the factors affecting the accuracy of four-quadrant detector spot detection and the commonly-used spot detection algorithms were analyzed. The four-quadrant detector spot detection system was introduced, including the beam alignment detection system, four-quadrant detector tracking communication composite system and micro-nano laser communication system. Finally, the development prospects of spot detection technology was prospected.
-
Key words:
- spot detection /
- four-quadrant detector /
- spot model /
- spot detection algorithm
-
图 7 LUCE终端的内部结构示意图[17]
Fig. 7 Schematic diagram of internal structure of LUCE terminal
图 8 LCE原理框图[18]
Fig. 8 Schematic block diagram of LCE
图 9 BLISL系统结构图[19]
Fig. 9 Structure diagram of BLISL system
图 10 基于象限APD的激光跟踪系统示意图[20]
Fig. 10 Schematic diagram of laser tracking system based on quadrant APD
图 11 KODEN接收机示意图[21]
Fig. 11 Schematic diagram of KODEN receiver
图 12 实验装置图[22]
Fig. 12 Schematic diagram of experimental device
图 13 SLT的基本框图[23]
Fig. 13 Basic block diagram of SLT
图 14 LLST光路图[28]
Fig. 14 Optical path diagram of LLST
图 15 不同光斑模式下的QD输出值[36]
Fig. 15 QD output values under different spot modes
图 16 不同光斑半径下的QD输出值[36]
Fig. 16 QD output values under different spot radius
图 17 不同死区宽度下的QD输出值[36]
Fig. 17 QD output values under different deadband widths
图 18 不同比例背景光下的QD输出值[33]
Fig. 18 QD output values under different scales of background light
图 19 不同系统信噪比下光斑位置标准差的变化曲线[28]
Fig. 19 Variation curve of standard deviation of spot position under different SNR
图 21 各象限响应均匀度不同时对QD输出的影响[33]
Fig. 21 Effect of different quadrant response uniformity on QD output
图 22 不同光斑模型下X、Y轴偏移量[34]
Fig. 22 Offset of X and Y axis under different spot models
图 23 光束对准检测系统结构[34]
Fig. 23 Structure diagram of beam-alignment detection system
图 24 缺失光斑检测图[34]
Fig. 24 Missing spot detection image
图 25 完整光斑检测图[34]
Fig. 25 Complete spot detection image
图 26 调节过程QD输出图[34]
Fig. 26 QD output diagram during adjustment process
图 27 跟踪与通信复合探测系统[46]
Fig. 27 Tracking and communication composite detection system
图 28 微纳激光通信终端系统结构示意图[53]
Fig. 28 Structure diagram of micro nano laser communication terminal system
表 1 三种探测器的对比[13]
Table 1 Comparison of three detectors
参数 QD CCD PSD 性能 可靠 可靠 可靠 驱动电路 复杂 较复杂 简单 信号处理 复杂 复杂 简单 噪声处理 外电路窄带滤波 复杂 外电路窄带滤波 响应时间 <4 ns 1 μs左右 0.5 μs左右 极限分辨率 0.01 μm 像元间距(几微米) 0.3 μs 表 2 光斑检测影响因素研究进展总结
Table 2 Summary of research progress on influencing factors of spot detection
年份 研究人员 研究内容 2007 徐代升 提出了光斑大小优化设计,改善系统性能 2010 赵馨等人 研究了QD的各种性能及外部环境对其性能的影响,并进行了实验测试 2015 张辉等人 推导出高斯光斑模型下位置检测精度的数学模型 2016 张骏等人 对QD定位误差的影响进行了研究,并提出了相应的修正方法 2017 李世艳 提出了一种光斑检测方法,减小了检测误差 2021 李树德等人 研究噪声因素对QD光斑位置定位的影响 2022 刁宽等人 建立了光斑半径、能量分布和探测器死区等影响因素下QD输出与光斑位置的表征方程 表 3 光斑检测算法研究进展总结
Table 3 Summary of research progress on spot detection algorithms
年份 研究人员 研究内容 2009 陈勇等人 提出将插值法和对角线算法相结合的一种改进算法,将测角误差控制在0.1°之内 2012 司栋森等人 提出了增益可调的快速跟踪定位算法,将跟踪精度提高到0.049 7 mm 2012 陈梦苇等人 对各种光斑模型讨论了和差、对角线、Δ/Σ和对数四种算法,并进行了比较 2015 WU J B
等人提出了Composite拟合算法,提高了测量精度 2017 郭小康等人 简化了二段式多项式拟合算法,将精度提高到10−4 mm数量级 2021 苟晔鹏等人 提出了基于无穷积分拟合方法的改进算法,提高了灵敏度 2021 秦立存等人 改进高斯光斑模型下的定位算法,均方根误差减小60.4% 表 4 光斑检测系统研究进展总结
Table 4 Summary of research progress on spot detection systems
年份 研究人员 研究内容 2003 王岱等人 设计了双轴跟踪控制试验演示系统 2013 ZHANG W
等人研制了一种利用QD做光斑检测探测器的小型激光跟踪系统 2017 范新坤等人 提出了使用雪崩二极管型QD实现跟踪与通信复用的方案,角分辨率为0.8 μrad 2018 林鑫等人 设计了一套基于QD的激光束二维扫描跟踪系统,并进行了测试 2019 刘思鸣等人 提出了一种基于QD的激光跟踪系统,跟踪误差约为0.1% 2019 王睿扬等人 设计数字跟踪通信复合接收机,探测灵敏度为−30 dBm 2020 王淋正等人 提出了一种中心开孔型四象限探测器光纤定位技术,并设计了定位算法 2021 KE X Z等人 设计了一种新型机载激光通信结构 2022 陈韵等人 设计微纳激光通信终端,跟踪误差为84 μrad 表 5 光斑检测算法总结
Table 5 Summary of spot detection algorithms
函数名称 优点 缺点 加减算法 灵敏度和线性范围较为平衡 线性范围较窄 对角线算法 线性范围较宽 灵敏度较低 差比和算法 灵敏度高 线性范围窄 对数算法 线性范围宽 灵敏度较差 函数拟合法 简单、易实现 拟合效果取决于拟合函数 归一化中心法 公式简单、计算速度快、对硬件要求较低 使用范围小 多项式拟合法 检测范围较大、检测精度较高 公式复杂、对硬件要求高 无穷积分法 检测精度较高 未考虑探测器死区和大小,检测误差较高 Boltzmann函数拟
合法检测精度较高 检测误差较高 Composite拟合算法 检测误差较低、检测精度高 精度难以再次提升 无穷积分拟合改进算法 检测精度高、计算量小,对硬件要求较低 反求导过程较为困难,适应范围小 -
[1] 柯熙政, 邓莉君. 无线光通信[M]. 北京: 科学出版社, 2016: 11-14.KE Xizheng, DENG Lijun. Wireless optical communication[M]. Beijing: Science Press, 2016: 11-14. [2] 柯熙政, 吴加丽, 杨尚君. 面向无线光通信的大气湍流研究进展与展望[J]. 电波科学学报,2021,36(3):323-339.KE Xizheng, WU Jiali, YANG Shangjun. Research progress and prospect of atmospheric turbulence for wireless optical communication[J]. Chinese Journal of Radio Science,2021,36(3):323-339. [3] 李征, 廖志文, 梁静远, 等. 大气湍流模型与大气信道模型的研究与展望[J]. 光通信技术,2023,47(3):9-17. doi: 10.13921/j.cnki.issn1002-5561.2023.03.002LI Zheng, LIAO Zhiwen, LIANG Jingyuan, et al. Research and prospects of atmospheric turbulence model and atmospheric channel model[J]. Optical Communication Technology,2023,47(3):9-17. doi: 10.13921/j.cnki.issn1002-5561.2023.03.002 [4] 姜清华, 李立京, 刘腾飞. 基于四象限探测器的导引头信号处理系统设计[J]. 电子测量技术,2018,41(2):88-92.JIANG Qinghua, LI Lijing, LIU Tengfei. Design of seeker signal processing system based on four-quadrant detector[J]. Electronic Measurement Technology,2018,41(2):88-92. [5] 刘鹏飞, 宋翠莲, 马昱超. 一种用于微光探测的四象限探测器设计[J]. 国外电子测量技术,2020,39(5):99-104.LIU Pengfei, SONG Cuilian, MA Yuchao. Design of a four quadrant detector for shimmer detection[J]. Foreign Electronic Measurement Technology,2020,39(5):99-104. [6] 李曦. 基于QD的精确定位技术研究[D]. 西安: 西安电子科技大学, 2011.LI Xi. Research on precision positioning technology based on QD[D]. Xi'an: Xidian University, 2011. [7] LI D, LIU S, BIN W. Research on factors that influence detecting precision of quadrant detector[J]. International Journal of Advancements in Computing Technology,2011,3(2):112-117. doi: 10.4156/ijact.vol3.issue2.14 [8] HERMOSA N, AIELLO A, WOERDMAN J P. Quadrant detector calibration for vortex beams[J]. Optics Letters,2011,36(3):409-411. doi: 10.1364/OL.36.000409 [9] MENG Y, SUN A X, ZHANG G Y, et al. Research effect of four-quadrant detector detection spot in atmospheric turbulence[J]. Applied Mechanics and Materials,2014,552:123-127. doi: 10.4028/www.scientific.net/AMM.552.123 [10] 赵馨, 佟首峰, 姜会林. 四象限探测器的特性测试[J]. 光学 精密工程,2010,18(10):2164-2170.ZHAO Xin, TONG Shoufeng, JIANG Huilin. Experimental testing on characteristics of four-quadrant detector[J]. Optics and Precision Engineering,2010,18(10):2164-2170. [11] 梁静远, 亢维龙, 董壮, 等. 自由空间光通信系统光学天线技术研究进展[J]. 光通信技术,2022,46(4):1-10.LIANG Jingyuan, KANG Weilong, DONG Zhuang, et al. Research progress of optical antenna technology in free space optical communication system[J]. Optical Communication Technology,2022,46(4):1-10. [12] 柯熙政, 李世艳. 光斑缺碎情形下光学天线光轴对准实验研究[J]. 光子学报,2017,46(4):133-141.KE Xizheng, LI Shiyan. Experimental study on optical axis alignment of the optical antenna under the spot broken[J]. Acta Photonica Sinica,2017,46(4):133-141. [13] 张圆清. 空间激光通信光斑位置检测与跟踪系统设计[D]. 西安: 西安理工大学, 2018.ZHANG Yuanqing. Design of spot position detection and tracking system for space laser communication[D]. Xi'an: Xi'an University of Technology, 2018. [14] GUO H W, LIU R Q, DENG Z Q, et al. Performance analysis and testing of four-quadrant position sensitive detector[J]. Advanced Materials Research,2011,317/318/319:1107-1113. [15] 陈梦苇. 基于象探测器的光斑中心定位算法研究[D]. 武汉: 武汉理工大学, 2013.CHEN Mengwei. Research on spot center location algorithm based on image detector[D]. Wuhan: Wuhan University of Technology, 2013. [16] HEMMATI H, BISWAS A, DJORDJEVIC I B. Deep-space optical communications: future perspectives and applications[J]. Proceedings of the IEEE,2011,99(11):2020-2039. doi: 10.1109/JPROC.2011.2160609 [17] TAKASHI J. Optical inter-orbit communication experiment between OICETS and ARTEMIS[J]. Journal of the National Institute of Information and Communications Technology,2012,59(1/2):23-33. [18] BAILLY M, PEREZ E. Pointing, acquisition, and tracking system of the European SILEX program: a major technological step for intersatellite optical communication[C]//Proceedings of Optics, Electro-Optics, and Laser Applications in Science and Engineering. Los Angeles: SPIE, 1991, 1417: 142-157. [19] GUELMAN M, LIVNE A, MICHALIK H, et al. Broadband laser intersatellite link for microsatellites: project overview[J]. Space Technology,2002,22(3):113-119. [20] TOYODA M, ARAKI K, SUZUKI Y. Measurement of the characteristics of a quandrant avalanche photo-diode application to a laser tracking system[J]. Optical Engineering,2002,41(1):145-149. doi: 10.1117/1.1418222 [21] TOYOSHIMA M, TAKENAKA H, SHOJI Y, et al. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space[J]. Acta Astronautica,2012,74:40-49. doi: 10.1016/j.actaastro.2011.12.020 [22] LEE E J, PARK Y, KIM C S, et al. Detection sensitivity of the optical beam deflection method characterized with the optical spot size on the detector[J]. Current Applied Physics,2010,10(3):834-837. doi: 10.1016/j.cap.2009.10.003 [23] SCHMIDT C, HORWATH J. Wide-field-of-regard pointing, acquisition and tracking-system for small laser communication terminals[J]. Proceedings of ICSOS,2012,8(4):1-6. [24] BARBARIĆ Ž P, MANOJLOVIĆ S M, BONDŽULIĆ B P, et al. New relationship of displacement signal at quadrant photodiode: control signal analysis and simulation of a laser tracker[J]. Optik,2014,125(4):1550-1557. doi: 10.1016/j.ijleo.2013.10.012 [25] CHEN Z L, YAN J J. Impact of pointing errors on performance of a ground-to-satellite laser uplink communication system based on M-ary pulse position modulation[J]. The Journal of China Universities of Posts and Telecommunications,2009,16(Sup.1):20-23. [26] ROBINSON B S, BOROSON D M, BURIANEK D A, et al. The lunar laser communications demonstration[C]//IEEE 2011 International Conference on Space Optical Systems and Applications (ICSOS). Santa Monica: IEEE, 2011: 54-57. [27] ROBINSON B S, BOROSON D M, BURIANEK D A, et al. Overview of the lunar laser communications demonstration[C]//Proceedings of Free-Space Laser Communication Technologies XXIII. San Francisco: SPIE, 2011. [28] 吴佳彬. 基于四象限探测器的高精度激光光斑位置检测技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.WU Jiabin. Research on high-precision laser spot position detection technology based on four-quadrant detector[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. [29] SAFI H, DARGAHI A, CHENG J L. Beam tracking for UAV-assisted FSO links with a four-quadrant detector[J]. IEEE Communications Letters,2021,25(12):3908-3912. doi: 10.1109/LCOMM.2021.3113699 [30] 徐代升. 四象限探测系统信号光斑的优化设计[J]. 湖南理工学院学报(自然科学版),2007,20(1):50-53.XU Daisheng. Optimal design for signal light spot of detecting systems with quadrant detectors[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences),2007,20(1):50-53. [31] 赵馨, 佟首峰, 刘云清, 等. 四象限探测器在空间激光通信中应用研究[J]. 光电子·激光,2010,21(1):46-49.ZHAO Xin, TONG Shoufeng, LIU Yunqing, et al. Application research on four-quadrant detector in space laser communication system[J]. Journal of Optoelectronics Laser,2010,21(1):46-49. [32] 张辉, 陈云善, 耿天文, 等. 四象限探测器位置检测精度的主要影响因素研究[J]. 中国激光,2015,42(12):306-314.ZHANG Hui, CHEN Yunshan, GENG Tianwen, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J]. Chinese Journal of Lasers,2015,42(12):306-314. [33] 张骏, 钱惟贤, 刘泽伟. 四象限探测器输出非均匀性分析与矫正[J]. 红外技术,2016,38(7):565-570.ZHANG Jun, QIAN Weixian, LIU Zewei. Analysis and correction of the output non-uniformity of four quadrant detector[J]. Infrared Technology,2016,38(7):565-570. [34] 李世艳. 无线激光通信系统中光斑精确对准实验方案研究[D]. 西安: 西安理工大学, 2018.LI Shiyan. Research on experimental scheme of spot accurate alignment in wireless laser communication system[D]. Xi'an: Xi'an University of Technology, 2018. [35] 李树德, 刘彩霞, 徐林, 等. 星间激光通信中四象限探测器的定位精度研究[J]. 光通信研究,2021(4):61-65.LI Shude, LIU Caixia, XU Lin, et al. Research on positioning accuracy of four quadrant detector in inter-satellite laser communication[J]. Study on Optical Communications,2021(4):61-65. [36] 刁宽, 刘晓军, 徐龙, 等. 四象限探测器光斑定位精度影响因素研究[J]. 华中科技大学学报(自然科学版),2022,50(4):14-18.DIAO Kuan, LIU Xiaojun, XU Long, et al. Research on factors affecting spot positioning accuracy of four-quadrant detector[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition),2022,50(4):14-18. [37] 陈勇, 祝天瑞, 李焕功. 四象限探测器测角算法分析与改进[J]. 激光与红外,2009,39(6):669-672.CHEN Yong, ZHU Tianrui, LI Huangong. Analysis and improvement in angle-measurement algorithm of the four-quadrant detector[J]. Laser & Infrared,2009,39(6):669-672. [38] 司栋森, 李增智, 王晓旭. 采用四象限探测器的智能跟踪定位算法[J]. 西安交通大学学报,2012,46(4):13-17.SI Dongsen, LI Zengzhi, WANG Xiaoxu. An intelligent tracking algorithm using four-quadrant detector[J]. Journal of Xi'an Jiaotong University,2012,46(4):13-17. [39] 陈梦苇, 杨应平, 贾信庭, 等. 四象限探测器光斑中心定位算法研究[J]. 武汉理工大学学报(交通科学与工程版),2013,37(5):1124-1127.CHEN Mengwei, YANG Yingping, JIA Xinting, et al. Research of spot center location algorithm for four quadrant detector[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2013,37(5):1124-1127. [40] WU J B, CHEN Y S, GAO S J, et al. Improved measurement accuracy of spot position on an InGaAs quadrant detector[J]. Applied Optics,2015,54(27):8049-8054. doi: 10.1364/AO.54.008049 [41] 郭小康, 张彦梅, 贺仕杰. 基于四象限探测器的光斑中心高精度定位算法[J]. 激光与红外,2017,47(11):1353-1357. doi: 10.3969/j.issn.1001-5078.2017.11.006GUO Xiaokang, ZHANG Yanmei, HE Shijie. Study on high precision positioning algorithm of spot center based on the four-quadrant detector[J]. Laser & Infrared,2017,47(11):1353-1357. doi: 10.3969/j.issn.1001-5078.2017.11.006 [42] 苟晔鹏, 刘星, 刘强, 等. 基于Infinite integral的四象限探测器光斑位置检测算法[J]. 激光与红外,2021,51(9):1249-1256. doi: 10.3969/j.issn.1001-5078.2021.09.023GOU Yepeng, LIU Xing, LIU Qiang, et al. A four-quadrant detector spot position detection algorithm based on infinite integral algorithm[J]. Laser & Infrared,2021,51(9):1249-1256. doi: 10.3969/j.issn.1001-5078.2021.09.023 [43] 秦立存, 贺伟. 基于四象限探测器的激光光斑中心定位算法[J]. 应用激光,2021,41(3):561-568.QIN Licun, HE Wei. Laser spot center location algorithm based on four-quadrant detector[J]. Applied Laser,2021,41(3):561-568. [44] 王岱, 杨世洪. 采用四象限探测器的双轴跟踪控制技术[J]. 光电工程,2003,30(5):31-33.WANG Dai, YANG Shihong. Double-axis tracking control techniques based on four-quadrant detector[J]. Opto-Electronic Engineering,2003,30(5):31-33. [45] ZHANG W, ZHANG H, LIU B, et al. Design of small laser tracking system based on four-quadrant detector[J]. Applied Mechanics and Materials,2013,300/301:393-399. doi: 10.4028/www.scientific.net/AMM.300-301.393 [46] 范新坤, 张磊, 宋延嵩, 等. 四象限探测器的跟踪与通信复合探测技术[J]. 中国激光,2017,44(9):247-254.FAN Xinkun, ZHANG Lei, SONG Yansong, et al. Simultaneous detection technology of tracking and communication based on four-quadrant detector[J]. Chinese Journal of Lasers,2017,44(9):247-254. [47] 林鑫, 郭迎, 韩明珠, 等. 基于四象限探测器的激光束二维扫描跟踪系统的研究[J]. 半导体光电,2018,39(3):425-430.LIN Xin, GUO Ying, HAN Mingzhu, et al. Research on two-dimensional laser beam scanning and tracking system based on four quadrant detector[J]. Semiconductor Optoelectronics,2018,39(3):425-430. [48] 刘思鸣, 何宁, 邓德迎. 基于四象限探测的激光跟踪系统的设计与实现[J]. 桂林电子科技大学学报,2019,39(1):7-11. doi: 10.3969/j.issn.1673-808X.2019.01.002LIU Siming, HE Ning, DENG Deying. Design and implementation of laser tracking system based on four quadrant detection[J]. Journal of Guilin University of Electronic Technology,2019,39(1):7-11. doi: 10.3969/j.issn.1673-808X.2019.01.002 [49] 王睿扬, 于笑楠, 佟首峰, 等. 四象限探测器数字跟踪通信复合接收机设计[J]. 长春理工大学学报(自然科学版),2019,42(3):42-50.WANG Ruiyang, YU Xiaonan, TONG Shoufeng, et al. Design of tracking and communication composite digital receiver for four quadrant detectorn[J]. Journal of Changchun University of Science and Technology,2019,42(3):42-50. [50] 王淋正, 邹华, 黄硕, 等. 中心开孔型四象限探测器光纤定位闭环控制方法[J]. 红外与激光工程,2020,49(6):264-270.WANG Linzheng, ZOU Hua, HUANG Shuo, et al. Closed-loop control method of optical fiber positioning of centeropening four-quadrant detector[J]. Infrared and Laser Engineering,2020,49(6):264-270. [51] KE X Z, LIANG H L. Airborne laser communication system with automated tracking[J]. International Journal of Optics,2021,2021:1-8. [52] 梁韩立. 机载激光通信自动跟踪控制系统设计与实现[D]. 西安: 西安理工大学, 2022.LIANG Hanli. Design and implementation of automatic tracking control system for airborne laser communication[D]. Xi'an: Xi'an University of Technology, 2022. [53] 陈韵, 于笑楠, 江伦, 等. 基于QD与MEMS振镜的微纳激光通信终端伺服技术研究[J]. 长春理工大学学报(自然科学版),2022,45(1):39-44.CHEN Yun, YU Xiaonan, JIANG Lun, et al. Research on servo technology of micro nano laser communication terminal based on QD and MEMS micromirror[J]. Journal of Changchun University of Science and Technology,2022,45(1):39-44. [54] 李千. 基于阵列探测器的空间激光通信光斑位置检测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.LI Qian. Research on spot position detection technology of space laser communication based on array detector[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. -