Opto-mechanical design of large-aperture near-infrared wavefront detection device
-
摘要: 自适应光学校正系统的主要功能是校正入射光的波前失真和补偿波前畸变,为了测量自适应光学系统的波前误差,采用非球面技术研制了一种工作波长为1 030 nm的波前检测装置。装置能够探测通光口径为200 mm×80 mm的大尺寸近红外矩形光束的波前,系统的中心视场PV值为0.123 λ,RMS值为0.036 1 λ,成像质量良好。在光学设计的基础上完成了结构设计,并在实验室环境下对该装置进行了组装和测试。测试结果表明,装置的光学参数和机械参数均满足设计的指标要求,可以完成自适应光学系统的波前检测任务。Abstract: The main function of an adaptive optics correction system is to correct for wavefront distortion and compensate for wavefront distortion of incident light. In order to measure the wavefront error of the adaptive optics system, a wavefront detection device with a working wavelength of 1 030 nm was developed using non-spherical technology. The device could detect the wavefront of a large-size near-infrared rectangular beam with a clear aperture of 200 mm×80 mm, and the center field of view of the system had a PV value of 0.123 λ and an RMS value of 0.036 1 λ, which indicated the imaging quality was good. Based on the optical design, the structural design of the device was completed and the device was assembled and tested in the laboratory environment. The test results show that the optical and mechanical parameters of the device meet the design specifications and can complete the wavefront detection task of the adaptive optics system.
-
Key words:
- adaptive optics /
- rectangular beam /
- wavefront detection device /
- structural design
-
表 1 波前检测装置技术指标
Table 1 Technical indexes of wavefront detection device
系统指标 数值 主缩束系统倍率 11.9 主缩束系统通光口径/ mm 200×80 视场/(′) ±2.89 波长/ nm 1030±1 主缩束系统筒长/ mm ≤265 主缩束装置出射光束准直度/(°) ≤0.02 主缩束系统入瞳位置/mm 500 主缩束系统配合光轴探测子光学系统等效焦距/m 5.5±5% 光轴探测子光学系统焦距/mm 462±2% 表 2 主缩束系统透镜数据
Table 2 Lens data of main beam-shrinking system
表面类型 曲率半径/mm 厚度/mm 材料 4阶项 6阶项 8阶项 偶次非球面 200 33 H-ZF7LA −1.70×10−8 −2.16×10−13 −3.69×10−18 标准面 ∞ 1 — — — — 偶次非球面 636 18 H-ZF7LA −5.39×10−9 −1.55×10−14 1.12×10−19 标准面 ∞ 174.75 — — — — 标准面 ∞ 1.5 H-ZF7LA — — — 偶次非球面 −53.3 0.1 — −1.19×10−5 1.01×10−7 −2.71×10−10 标准面 ∞ 2.8 H-ZF7LA — — — 偶次非球面 −16.8 10.72 — 4.41×10−5 2.55×10−8 1.31×10−10 近轴面 — 16.81 — — — — 表 3 波前检测装置整体性能指标
Table 3 Overall performance indexes of wavefront detection device
整体性能 技术要求 环境适应性 方便运输、易于安装、抗霉菌、抗腐蚀抗锈、
户外环境温度−30 ℃~+60 ℃装置重量/kg <20 外形尺寸/ mm3 <300×120×250 表 4 光学指标检测结果
Table 4 Test results of optical indexes
名称 检测项目 技术指标要求 检测结果 检测设备 光轴探测系统 焦距/mm 462 462.5 焦距测量仪 复合传感器 焦距/m 5.5 5.5 焦距测量仪 表 5 部件与整机外形尺寸
Table 5 External dimensions of parts and whole machine
mm 名称 安装要求
(长×宽×高)检测结果 光瞳探测光学系统 <123×45×45 126×44×44 光轴探测光学系统 <70×45×45 63×44×44 整机 <300×120×250 299.9×120.1×249.8 -
[1] CAHOY K L, MARINAN A D, NOVAK B, et al. Wavefront control in space with MEMS deformable mirrors for exoplanet direct imaging[J]. Journal of Micro/Nanolithography MEMS and MOEMS,2014,13(1):011105. doi: 10.1117/1.JMM.13.1.011105 [2] 饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程,2018,45(3):170733.RAO Changhui, ZHU Lei, ZHANG Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering,2018,45(3):170733. [3] RAO CH H, GU N T, RAO X J, et al. First light of the 1.8 m solar telescope-CLST[J]. Science China Physics, Mechanics & Astronomy,2020,63(10):1-2. [4] CHEN M, LIU CH, RUI D M, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express,2018,26(4):4230. doi: 10.1364/OE.26.004230 [5] CHEN M, LIU C, RUI D, et al. Experimental results of atmospheric coherent optical communications with adaptive optics[J]. Optics Communications,2019,434:91-96. doi: 10.1016/j.optcom.2018.10.013 [6] 芮道满, 刘超, 陈莫, 等. 自适应光学技术在星地激光通信地面站上的应用[J]. 光电工程,2018,45(3):170647.RUI Daoman, LIU Chao, CHEN Mo, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering,2018,45(3):170647. [7] WANG D, ZHANG X, DAI W J, et al. 1178 J, 527 nm near diffraction limited laser based on a complete closed-loop adaptive optics controlled off-axis multi-pass amplification laser system[J]. High Power Laser Science and Engineering,2021,9:1-12. doi: 10.1017/hpl.2021.3 [8] LI S S, WANG Y L, LU ZH W, et al. High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system[J]. Optics Express,2015,23(2):681. doi: 10.1364/OE.23.000681 [9] 相里微. 大功率激光波前测量系统设计[D]. 西安: 西安电子科技大学, 2012.XIANGLI Wei. Design of high power laser wavefront measurement system[D]. Xi'an: Xidian University, 2012. [10] FOURMAUX S, PAYEUR S, ALEXANDROV A, et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source[J]. Optics Express,2008,16(16):11987. doi: 10.1364/OE.16.011987 [11] 张禹, 杨忠明, 刘兆军, 等, 大口径多光谱通道波前测量系统设计[J]. 红外与激光工程, 2020, 49(8): 20190559.ZHANG Yu, YANG Zhongming, LIU Zhaojun, et al. Design of large aperture multi-spectra channel wavefront measurement system[J]. Infrared and Laser Engineering, 2020, 49(8): 20190559. [12] 张禹. 共轴式大口径多光谱通道波前测量系统的研究[D]. 济南: 山东大学, 2020.ZHANG Yu. Research on coaxial large aperture multispectral wavefront measurement system[D]. Jinan: Shandong University, 2020. [13] 吴道胜. 相位差图像重建技术在液晶自适应光学系统中的应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.WU Daosheng. Application of phase difference image reconstruction technology in liquid crystal adaptive optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. [14] 郭骏立. 视频相机反射镜组件结构设计及其胶结工艺研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.GUO Junli. Structural design and cementing technology of mirror assembly for video camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. [15] 邢辉, 焦文春, 王昀. 透射式红外镜头的高精度定心装调[J]. 红外,2013,34(9):19-23. doi: 10.3969/j.issn.1672-8785.2013.09.004XING Hui, JIAO Wenchun, WANG Yun. High precision assembling of diffractive infrared lens[J]. Infrared,2013,34(9):19-23. doi: 10.3969/j.issn.1672-8785.2013.09.004 -